

## St Thomas of Aquin's RC High School



## Helping your child achieve Level 4

| Estimation and Rounding                                                                              |                                     |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------|--|
| I can round answers to specified Significant                                                         | 254.125874                          |  |
|                                                                                                      | 1 Significant Figure: <b>300</b>    |  |
|                                                                                                      | 2 Significant Figures: <b>250</b>   |  |
|                                                                                                      | 3 Significant Figures: <b>254</b>   |  |
|                                                                                                      | 4 Significant Figures: <b>254.1</b> |  |
| I take into consideration the context of a question before rounding.                                 | A coach can carry 62 passengers.    |  |
|                                                                                                      | How many coaches are required to    |  |
|                                                                                                      | transport 200 pupils and 10 staff   |  |
|                                                                                                      | members?                            |  |
|                                                                                                      | 210 ÷ 62 = 3.387                    |  |
|                                                                                                      | Therefore, 4 coaches are required.  |  |
| I can use a given tolerance to decide if there is<br>an allowable amount of variation of a specified | Dimensions of a machine part are    |  |
| quantity.                                                                                            | 235 mm ± 1 mm                       |  |
|                                                                                                      | Maximum length = 236mm              |  |
|                                                                                                      | Minimum length = 234mm              |  |

| Numbe                                                            | er al | nd number proce | esses                           |  |
|------------------------------------------------------------------|-------|-----------------|---------------------------------|--|
| I can apply the correct order of operations including those with | B     | Brackets        | 10 × (4 + 2) = 10 × 6 = 60      |  |
| brackets                                                         | Ι     | Indices         | $5 + 2^2 = 5 + 4 = 9$           |  |
|                                                                  | D     | Division        | 10 + 6 ÷ 2 = 10 + 3 = 13        |  |
|                                                                  | Μ     | Multiplication  | 10 - 4 × 2 = 10 - 8 = 2         |  |
|                                                                  | Α     | Addition        | 10 × 4 + 7 = 40 + 7 = <b>47</b> |  |
|                                                                  | S     | Subtraction     | 10 ÷ 2 - 3 = 5 - 3 = 2          |  |
|                                                                  |       |                 |                                 |  |

| Powers and roots                                       |                                  |
|--------------------------------------------------------|----------------------------------|
| I can show that square roots of whole numbers can have | $\sqrt{9} = \pm 3$               |
| positive and negative values.                          | Since $3^2 = 9$ and $(-3)^2 = 9$ |

| I can evaluate whole number     | $\sqrt[3]{8} = 2$               |
|---------------------------------|---------------------------------|
| roots of any appropriate number | $\sqrt[3]{27} = 3$              |
| I can express numbers in        | $3400 = 3.4 \times 10^3$        |
| Scientific Notation.            | $0.000034 = 3.4 \times 10^{-5}$ |

| Fractions, o                     | lecimal frac                                                    | tions and                                                      | percent                                                   | ages                                                       |                                   |          |
|----------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------|----------|
| Convert fractions, decimal       | 1                                                               | 1                                                              | 3                                                         | 2                                                          |                                   | 1        |
| fractions and percentages to     | 10                                                              | 5                                                              | 10                                                        | -                                                          |                                   | 2        |
| equivalent fractions, decimal    | 0.1                                                             | 0.2                                                            | 0.3                                                       | 0.4                                                        | 0                                 | 0.5      |
| fractions or percentages to      | 10%                                                             | 20%                                                            | 30%                                                       | 40%                                                        | 5 5                               | 0%       |
| make comparisons.                |                                                                 |                                                                |                                                           |                                                            |                                   |          |
|                                  |                                                                 | 3                                                              | 7                                                         | 4                                                          | 9                                 | 1        |
|                                  |                                                                 | 5                                                              | 10                                                        | 5                                                          | 10                                | ै        |
|                                  |                                                                 | 0.6                                                            | 0.7                                                       | 0.8                                                        | 0.9                               | 1.0      |
|                                  |                                                                 | 60%                                                            | 70%                                                       | 80%                                                        | 90%                               | 100%     |
|                                  |                                                                 |                                                                | 0.6 >                                                     | 3<br>10                                                    |                                   |          |
| I can calculate percentage       | A                                                               | ppreciatio                                                     | on - perc                                                 | entage i                                                   | increase                          | 2        |
| increase or decrease of a value. | De                                                              | , ,<br>epreciatio                                              | n - perce                                                 | entage d                                                   | lecrease                          | 2        |
| I can add, subtract and multiply | Example<br>A car was<br>depreciate<br>What is th<br>the origina | originally<br>es in value<br>ne value of<br>10<br>0.95<br>al 1 | purchase<br>at a rate<br>f the car<br>0% - 5%<br>5 × 6500 | ed for £<br>e of 4%<br>after 1<br>= 95%<br>= <u>£617</u> ! | 26500. ]<br>per anr<br>year?<br>5 | <br>1um. |
| fractions.                       | fractions<br>with a com<br>denomina                             | $\frac{1}{1000} = \frac{1}{1000}$                              | $+\frac{3}{6}$                                            |                                                            |                                   |          |
|                                  | result:                                                         | <u>-</u><br>6                                                  | 5                                                         |                                                            |                                   |          |

|                                                                | Multiply the $\frac{2}{5} \times \frac{3}{4} = \frac{6}{5}$        |
|----------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                | Multiply the $\frac{2}{5} \times \frac{3}{4} = \frac{6}{20}$       |
|                                                                | Reduce the fraction if $\frac{6}{20} = \frac{3}{10}$               |
| I can solve problems in which related quantities are increased | Value Added Tax (VAT) = 20% (from 4 <sup>th</sup> January<br>2010) |
| or decreased proportionally.                                   | <b>Example</b> Calculate the total price of a computer             |
|                                                                | which costs £650 excluding VAT                                     |
|                                                                | 20% of £650                                                        |
|                                                                | $=\frac{1}{5}$ of 650                                              |
|                                                                | = 650 ÷ 5                                                          |
|                                                                | = 130                                                              |
|                                                                | Total price = 650 + 130                                            |
|                                                                | = £780                                                             |

| Money                                                                  |                                                                                                            |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| I can describe credit and debit in relation to earning and deductions. | <b>Debit card:</b> draws money directly from your account when you make a purchase.                        |  |
|                                                                        | <b>Credit card:</b> borrows pre-approved funds when you make a purchase. Money is paid back with interest. |  |
|                                                                        | APR: annual percentage rate                                                                                |  |
|                                                                        | <b>pa:</b> per annum                                                                                       |  |
|                                                                        | <b>Interest rate</b> : the percentage charged by a lender when borrowing money.                            |  |

| I can budget effectively.                                                              | Income: Money received/earned.                                                   |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                                                                                        | Expenditure: Money spent.                                                        |
|                                                                                        | <b>Surplus:</b> Money left over. Occurs when income is greater than expenditure. |
| I can calculate net income.                                                            | Net Income = Gross Income - Deductions.                                          |
|                                                                                        | Examples of deductions:                                                          |
|                                                                                        | Tax                                                                              |
|                                                                                        | National Insurance contribution                                                  |
|                                                                                        | Student Loan                                                                     |
|                                                                                        | Private Pension                                                                  |
| I can compare a range of<br>personal finance products and<br>communicate the impact of | When opening a savings account - seek a high interest rate.                      |
| financial decisions.                                                                   | When borrowing money (loans, credit cards,                                       |
|                                                                                        | mortgages) – seek a low interest rate.                                           |
| I can apply knowledge of                                                               | £ $\rightarrow$ \$ multiply by the exchange rate.                                |
| determine the best value.                                                              | $\Rightarrow \pounds$ divide by the exchange rate.                               |



| I can calculate speed, | $\wedge$             |                  |
|------------------------|----------------------|------------------|
| distance and time      |                      | $D = S \times T$ |
| involving decimal      |                      | S =D ÷ T         |
| fraction hours.        |                      |                  |
|                        | / S   T \            | $T = D \div S$   |
|                        |                      |                  |
|                        |                      |                  |
|                        | To change hours to n | ninutes -> ×60   |
|                        | To change minutes to | o hours -> ÷60   |

| Measurement                                                                         |                                                                                                               |  |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|
| I can calculate the area of kites,<br>parallelograms, and trapeziums.               | $A_{kite} = \frac{1}{2}(d_1 \times d_2)$ $A_{parallelogram} = B \times H$ $A_{trapezium} = \frac{1}{2}(a+b)h$ |  |
| I can calculate the surface area<br>of cylinders, cuboids and<br>triangular prisms, | $SA_{cylinder} = 2\pi rh + 2\pi r^{2}$ $SA_{cuboid} = 2lw + 2lh + 2wh$ $SA_{triangularprism} = 3lw + bh$      |  |
| I can calculate the volume of triangular prisms and cylinders.                      | $V_{prism} = A \times h$ $V_{cylinder} = A \times h = \pi r^{2}h$                                             |  |

| Patterns and relationships        |                                        |  |
|-----------------------------------|----------------------------------------|--|
| I can determine a general         | Number Sequence: 10, 14, 18, 22 4n + 6 |  |
| formula for the nth term to       |                                        |  |
| describe a sequence               | Number Sequence: 1, 3, 5, 7, 9 2n - 1  |  |
| I can calculate the gradient of a | $(x_1, y_1)$ and $(x_2, y_2)$          |  |
| line given two points on a        |                                        |  |
| coordinate diagram.               | $m = \frac{y_2 - y_1}{y_2 - y_1}$      |  |
|                                   | $x_2 - x_1$                            |  |
| I can communicate the gradient    | Horizontal line -> m = 0               |  |
| of a vertical and horizonal line. |                                        |  |
|                                   | Vertical line -> m is undefined.       |  |
|                                   |                                        |  |



| Expressions and equations                |                                            |  |
|------------------------------------------|--------------------------------------------|--|
| I can expand brackets                    | 4(x + 3) = 4x + 12<br>5(2x + 4) = 10x + 20 |  |
|                                          | Example                                    |  |
| I can solve a range of linear equations. | 5x + 2 = 2x - 1                            |  |
|                                          | -2× -2×                                    |  |
|                                          | 3x + 2 = -1                                |  |
|                                          | -2 -2                                      |  |
|                                          | 3x = -3                                    |  |
|                                          | × = -1                                     |  |
| I can solve linear inequations           | Follow the above method                    |  |
|                                          | a > b a is greater than b                  |  |
|                                          | a < b a is less than b                     |  |
|                                          | $a \ge b$ a is greater than or equal to b  |  |
|                                          | $a \le b$ a is less than or equal to b     |  |

| I can factorise expressions | ab + ac = a(b + c) |
|-----------------------------|--------------------|
| using a common factor       |                    |







| Data and analysis                       |                                                      |
|-----------------------------------------|------------------------------------------------------|
| I can interpret raw and graphical data. | Reading from a variety or charts, tables and graphs. |



| Ideas of chance and uncertainty                   |                                                                              |
|---------------------------------------------------|------------------------------------------------------------------------------|
| I can calculate<br>probability and<br>predict how | The probability of rolling a 3 on a regular dice is $\frac{1}{6}$            |
| many times I<br>can expect an<br>event to occur.  | Therefore, if I rolled a dice 60 times. I would expect a 3 on ten occasions. |
|                                                   | $(\frac{1}{6} \times 60 = 10)$                                               |