St Thomas of Aquin's RC High School

Helping your child achieve
 Level 4

Estimation and Rounding	
I can round answers to specified Significant Figures.	254.125874
	1 Significant Figure: 300
2 Significant Figures: 250	
3 Significant Figures: 254	
	4 Significant Figures: 254.1
I take into consideration the context of a question before rounding.	A coach can carry 62 passengers. How many coaches are required to transport 200 pupils and 10 staff members?
$210 \div 62=3.387$	
I can use a given tolerance to decide if there is an allowable amount of variation of a specified quantity.	Dimensions of a machine part are 235 mm ± 1 mm

Number and number processes			
I can apply the correct order of operations, including those with brackets.	B	Brackets	$10 \times(4+2)=10 \times 6=60$
I	Indices	$5+2^{2}=5+4=9$	
	D	Division	$10+6+2=10+3=13$
	M	Multiplication	$10-4 \times 2=10-8=2$
A	Addition	$10 \times 4+7=40+7=47$	
	S	Subtraction	$10+2-3=5=3=2$

Powers and roots	
l can show that square roots of whole numbers can have positive and negative values.	Since $3^{2}=9$ and $(-3)^{2}=9$

I can evaluate whole number roots of any appropriate number	$\sqrt[3]{8}=2$				
$\sqrt[3]{27}=3$		$	$		$3400=3.4 \times 10^{3}$
:---	:---:				
I can express numbers in Scientific Notation.	$0.000034=3.4 \times 10^{-5}$				

I can solve problems in which related quantities are increased or decreased proportionally.	$\begin{aligned} & \text { Value Added Tax }(V A T)=20 \% \text { (from } 4^{\text {th }} \text { January } \\ & \text { 2010) } \end{aligned}$ Example Calculate the total price of a computer which costs $£ 650$ excluding VAT $\begin{aligned} & 20 \% \text { of } £ 650 \\ & =\frac{1}{5} \text { of } 650 \\ & =650 \div 5 \\ & =130 \end{aligned}$ $\begin{aligned} \text { Total price } & =650+130 \\ & =£ 780 \end{aligned}$

Money	
I can describe credit and debit in relation to earning and deductions.	Debit card: draws money directly from your account when you make a purchase. Credit card: borrows pre-approved funds when you make a purchase. Money is paid back with interest. APR: annual percentage rate
	pa: per annum Interest rate: the percentage charged by a lender when borrowing money.

I can budget effectively.	Income: Money received/earned. Expenditure: Money spent. Surplus: Money left over. Occurs when income is greater than expenditure.		
I can calculate net income.	Net Income = Gross Income - Deductions.		
Examples of deductions:			
Tax			
National Insurance contribution			
Student Loan			
Private Pension		,	When opening a savings account - seek a high
:---			
interest rate.			
When borrowing money (loans, credit cards,			
mortgages) - seek a low interest rate.	\left\lvert\,	I can compare a range of	
:---			
personal finance products and			
communicate the impact of			
financial decisions.	\quad	£ multiply by the exchange rate.	
:---			
$\$ \rightarrow$ £ divide by the exchange rate.	\right.		

| I can calculate speed, |
| :--- | :--- | :--- |
| distance and time |
| involving decimal |
| fraction hours. |

To change hours to minutes $\rightarrow \times 60$
To change minutes to hours -> $\div 60$

Measurement	
I can calculate the area of kites, parallelograms, and trapeziums.	$\begin{gathered} A_{\text {kite }}=\frac{1}{2}\left(d_{1} \times d_{2}\right) \\ A_{\text {parallelogram }}=B \times H \\ A_{\text {trapezium }}=\frac{1}{2}(a+b) h \end{gathered}$
I can calculate the surface area of cylinders, cuboids and triangular prisms,	$\begin{gathered} S A_{\text {cylinder }}=2 \pi r h+2 \pi r^{2} \\ S A_{\text {cuboid }}=2 l w+2 l h+2 w h \\ S A_{\text {triangularprism }}=3 l w+b h \end{gathered}$
I can calculate the volume of triangular prisms and cylinders.	$\begin{gathered} V_{\text {prism }}=A \times h \\ V_{\text {cylinder }}=A \times h=\pi r^{2} h \end{gathered}$

Patterns and relationships	
l can determine a general formula for the nth term to describe a sequence	Number Sequence: $10,14,18,22 \ldots 4 n+6$
I can calculate the gradient of a line given two points on a coordinate diagram.	$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
I can communicate the gradient of a vertical and horizonal line.	Horizontal line $\rightarrow m=0$

Expressions and equations	
I can expand brackets	Example I can solve a range of linear equations.

I can factorise expressions using a common factor	$a b+a c=a(b+c)$

| Properties of 2D and 3D objects | | |
| :--- | :--- | :--- | :--- |
| I can apply Pythagoras'
 Theorem | | |

Angle, symmetry and transformation							
I can describe the rotational properties of shapes.	A shape has rotational symmetry when it can be rotated and still looks the same. The order or rotational symmetry of a shape is the number of times it can be rotated around a full circle and still look the same.						
I can apply rotational symmetry to complete designs.							

I can reflect or translate an object on a four quadrant Cartesian diagram.	(x, y) reflected in the x-axis gives $(x,-y)$ (x, y) reflected in the y-axis gives $(-x, y)$
I can use similarity to find the unknown length of 2 D shapes.	$\text { Scale Factor }=\frac{\text { new }}{\text { original }}$ Unknown Length $=$ Scale Factor \times corresponding length
I can describe a tangent.	A tangent meets a circle at one point. The angle between a tangent and a radius is 90°.
I can apply my knowledge of triangles, angles and circles, including semicircles, to solve problems.	A tringle formed within a circle, using the diameter will be a right-angled triangle.

Data and analysis	
I can interpret raw and graphical data.	Reading from a variety or charts, tables and graphs.

I can use statistical language to describe identified relationships.	The below line graph shows a negative correlation. The trend of the graph is that her weight is decreasing.
I can calculate the mean, median, mode and range of a data set.	Range $=$ greatest $\boldsymbol{-}$ lowes t Median - first put the values in ascending order and then select the middle value. Mode - this is the value which appears most frequently. $\text { Mean }=\frac{\text { total of values }}{\text { number of values }}$
I can display a data set in a range of statistical diagrams.	Back-to-back stem and leaf plots Comparative line graphs Pie Charts.
I can describe and give examples of discrete and continuous data.	Discrete data is counted. Example, the results of rolling a dice. Continuous data is measured. Example, height.

Ideas of chance and uncertainty	
I can calculate probability and predict how many times I can expect an event to occur.	The probability of rolling a 3 on a regular dice is $\frac{1}{6}$ Therefore, if I rolled a dice 60 times. I would expect a 3 on ten occasions. $\left(\frac{1}{6} \times 60=10\right)$

