New Higher Homework 7

Section 1: Polynomials and Quadratics

1. Show that the following polynomial has the given factor, and hence factorise it fully:

$$
2 x^{3}-11 x^{2}+17 x-6 ; \text { factor } x-3
$$

2. Find p, given that $(x+3)$ is a factor of $x^{3}-x^{2}+p x+15$.
3. Solve the quadratic inequation: $2 x^{2}+5 x-3 \leq 0$
4. Show that the roots of the equation $(k-2) x^{2}-(3 k-2) x+2 k=0$ are real for all $k \in R$.
5. (a) Prove that the line with equation $y+2 x=4$ is tangent to the parabola $y=x^{2}-4 x+5$.
(b) Find the coordinates of the point of contact.

Section 2: Circles

1. Write down the equation of each of these circles:
(a) Centre $(0,0)$; radius 3 .
(b) Centre $(2,1)$; radius $\sqrt{2}$.
2. Write down the centre and radius of each of these circles:
(a) $x^{2}+(y-3)^{2}=10$
(b) $x^{2}+y^{2}+10 x+12 y-3=0$
3. A is the point $(2,1)$ and B is the point $(8,9)$.
(a) Find the equation of the circle with centre A and radius AB .
(b) Find the equation of the circle that has AB as a diameter.
4. A circle centred at the origin has the line $x+y=4$ as a tangent. Find the equation of the circle. (Hint: Sketch it!)
5. Find the equation of the tangent to the circle $x^{2}+y^{2}-6 x+2 y+2=0$ which passes through the point $\mathrm{A}(1,-3)$ on the circumference of the circle.
