Section 1: Polynomials

1. $\quad f(x)=x^{3}+2 x^{2}-x+4, \quad g(x)=3 x^{4}+3 x^{2}+5 x-17, \quad h(x)=x^{4}-6 x+7, \quad k(x)=9 x^{3}-7 x^{2}+9$.
Evaluate, using "synthetic division":
(a) $\quad f(3)$
(b) $\quad g(-3)$
(c) $\quad h(-2)$
(d) $\quad k(2)$
2. Show that the following polynomials have the given factors, and hence factorise them fully.
(a) $\quad x^{3}-2 x^{2}-x+2 ;$ factor $(x-2)$
(b) $2 x^{3}-11 x^{2}+17 x-6$; factor $(x-3)$
3. Factorise fully:
(a) $2 x^{3}+5 x^{2}-4 x-3$
(b) $2 x^{3}+7 x^{2}+2 x-3$
(c) $x^{3}-1$
4. Find p, given that $(x+3)$ is a factor of $x^{3}-x^{2}+p x+15$.
5. $\quad f(x)=x^{3}-2 x^{2}-5 x+6, g(x)=x-1$.
(a) Show that $f(g(x))=x^{3}-5 x^{2}+2 x+8$.
(b) Factorise fully $f(g(x))$.
(c) $\quad h(x)=\frac{1}{f(g(x))}$. For what values of x is h not defined?

Section 2: Calculus

1. Differentiate:
(a) $\sqrt{x}(1-\sqrt{x})$
(b) $\frac{1+x^{2}}{\sqrt{x}}$
(c) $\frac{4}{3 x^{2}}$
(d) $\left(x-\frac{1}{x}\right)^{2}$
2. (a) Find the gradient of the tangent to the curve $y=x^{2}+\frac{24}{x}$ at the point $\mathrm{P}(2,16)$.
(b) The tangent at P meets the x-axis at A and the y-axis at B . Calculate the area of $\Delta \mathrm{AOB}$.
3. The loss of heat from a hot water tank is proportional to the total surface area of the tank. It is therefore important to design a tank with the minimum possible surface area.
(a) For a closed cylindrical tank of volume $50000 \mathrm{~cm}^{3}$, show that the total surface area is given by $\mathrm{A}=2 \pi r^{2}+\frac{100000}{r} \quad\left(\mathrm{~cm}^{2}\right)$.
(b) Use differentiation to find the value of r corresponding to a stationary value of A and show that this value is a minimum.
(c) Find the minimum value of A and determine whether this is greater than or less than the total surface area of a cubic tank with the same volume $50000 \mathrm{~cm}^{3}$
