Section 1: Differentiation

1. Differentiate each of the following w.r.t. x:

(a)
$$y = 2x^3 - 4x^2$$

(a)
$$y = 2x^3 - 4x^2$$
 (b) $y = x^2 + \frac{1}{x}$ (c) $y = x(x-2)^2$
(d) $y = \sqrt{x}$ (e) $y = \frac{1}{\sqrt{x}}$ (f) $y = \frac{1}{2x^3}$

(c)
$$y = x(x-2)^2$$

(d)
$$y = \sqrt{x}$$

(e)
$$y = \frac{1}{\sqrt{x}}$$

(f)
$$y = \frac{1}{2x^3}$$

2. Find the equation of the tangent to:

(a)
$$y = 4x^3 + 2x$$
 at the point where $x = 1$.

(b)
$$y = x^3 - 4x$$
 at the point where $x = -1$.

(c)
$$y = (x-2)^2$$
 at the point where $x = 1$.

3. In each of the following, find f'(x):

(a)
$$f(x) = \frac{3}{4x^2}$$

(a)
$$f(x) = \frac{3}{4x^2}$$
 (b) $f(x) = \sqrt{x} + \frac{1}{\sqrt{x}}$

(c)
$$f(x) = \frac{x^2 + 1}{x}$$

(d)
$$f(x) = \sqrt{x(x+1)}$$
 (e) $f(x) = \frac{1+x}{\sqrt{x}}$

(e)
$$f(x) = \frac{1+x}{\sqrt{x}}$$

$$(f) f(x) = \frac{x^2 + 2x}{x}$$

4. (a)
$$f(x) = x^2 + 3x$$
. Calculate the rate of change of $f(x)$ when $x = 3$.

(b)
$$y = \frac{x^4 - x}{x^3}$$
. Calculate the rate of change of y when $x = 1$.

Section 2: Functions

Find the composite function g(f(x)) for each of the following, expressing your answer in its 1. simplest form.

(a)
$$f(x) = 2x +$$

 $g(x) = x^2 + 1$

$$f(x) = 2x + 1$$
 $g(x) = x^2 + 1$ (b) $f(x) = 2x + 1$ $g(x) = \frac{1}{x^2}$

(c)
$$f(x) = x^2 + 2x + 1$$
$$g(x) = 2x^2 + 4$$

2. Find the inverse function
$$f^{-1}(x)$$
 for each of the following.

$$f(x) = 3x - 5$$

(b)
$$f(x) = x^2 + 2$$

$$f(x) = 3x - 5$$
 (b) $f(x) = x^2 + 2$ (c) $f(x) = \frac{x+4}{7}$