Section 1: Differentiation

1. Differentiate each of the following w.r.t. x :
(a) $y=2 x^{3}-4 x^{2}$
(b) $y=x^{2}+\frac{1}{x}$
(c) $y=x(x-2)^{2}$
(d) $y=\sqrt{x}$
(e) $y=\frac{1}{\sqrt{x}}$
(f) $y=\frac{1}{2 x^{3}}$
2. Find the equation of the tangent to:
(a) $y=4 x^{3}+2 x$ at the point where $x=1$.
(b) $y=x^{3}-4 x$ at the point where $x=-1$.
(c) $\quad y=(x-2)^{2}$ at the point where $x=1$.
3. In each of the following, find $f^{\prime}(x)$:
(a) $\quad f(x)=\frac{3}{4 x^{2}}$
(b) $\quad f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$
(c) $\quad f(x)=\frac{x^{2}+1}{x}$
(d) $\quad f(x)=\sqrt{x}(x+1)$
(e) $\quad f(x)=\frac{1+x}{\sqrt{x}}$
(f) $\quad f(x)=\frac{x^{2}+2 x}{x}$
4. (a) $\quad f(x)=x^{2}+3 x$. Calculate the rate of change of $f(x)$ when $x=3$.
(b) $\quad y=\frac{x^{4}-x}{x^{3}}$. Calculate the rate of change of y when $x=1$.

Section 2: Functions

1. Find the composite function $g(f(x))$ for each of the following, expressing your answer in its simplest form.

$$
f(x)=2 x+1
$$

$$
f(x)=2 x+1
$$

(a)
(b) $\quad g(x)=\frac{1}{x^{2}}$
(c) $\quad \begin{aligned} & f(x)=x^{2}+2 x \\ & g(x)=2 x^{2}+4\end{aligned}$
2. Find the inverse function $f^{-1}(x)$ for each of the following.
(a)
$f(x)=3 x-5$
(b) $\quad f(x)=x^{2}+2$
(c) $\quad f(x)=\frac{x+4}{7}$

