National 5 Mathematics Course outline June | Skill | Content | Website Links | |--|---|--| | Working with surds | ◆ Simplification◆ Rationalising denominators | https://www.bbc.com/bitesize/guides/z9jtw6f/revision/1 | | Simplifying expressions using the laws of indices | Multiplication and division using positive and negative indices including fractions Calculations using scientific notation (a^m)ⁿ = a^{mn} | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Indices-Credit-1.pdf http://www.national5maths.co.uk/wp-content/uploads/2016/01/Scientific-Notation- Credit.pdf | | Working with algebraic expressions involving expansion of brackets | a(bx + c) + d(ex + f) ax(bx + c) (ax + b)(cx + d) (ax + b)(cx² + dx + e) where a, b, c, d, e, f are integers | https://www.bbc.com/bitesize/guides/z2yg87h/revision/1 | | Factorising an algebraic expression | Common factor Difference of squares p² x² − a² Common factor with difference of squares Trinomials with unitary x² coefficient Trinomials with non-unitary x² coefficient | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Factorising-Credit.pdf https://www.bbc.com/bitesize/guides/zmvrd2p/revision/1 | # National 5 Mathematics Course outline August/September | Factorising an algebraic Expression (continued) | Extend to: Solving from factorised form Solving using quadratic formula | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Factorising-Credit.pdf https://www.bbc.com/bitesize/guides/zmvrd2p/revision/1 | |---|---|--| | Completing the square in a quadratic expression with unitary x ² coefficient | | https://www.bbc.com/bitesize/guides/zxcjrwx/revision/1 | | Reducing an algebraic fraction to its simplest form | • a / b where a,b are of the form $(x + p)^n$
or $(x + p)(x + q)$ | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Algebraic-Fractions-Credit.pdf https://www.bbc.com/bitesize/guides/zwv9y4j/revision/1 | | Applying one of the four operations to algebraic fractions | a / b*c / d where a, b, c, d can be simple constants or variables. *can be add, subtract, multiply or divide | https://www.bbc.com/bitesize/guides/zgtv6yc/revision/1 | | September Progress Test | | | | Determining the gradient of a straight line, given two points | $m = \frac{y_2 - y_1}{x_2 - x_1}$ | https://www.bbc.com/bitesize/guides/z8383k7/revision/1 | # National 5 Mathematics Course outline August/September | Determining the equation of a straight line, given the gradient | ◆ Use the formula y - b = m(x - a) or equivalent to find the equation of a straight line, given one point and the gradient of the line ◆ Use functional notation f(x) ◆ Identify gradient and y -intercept from y = mx + c ◆ Identify gradient and y-intercept from various forms of the equation of a straight line | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Straight-Line-Credit.pdf https://www.bbc.com/bitesize/guides/z24qcj6/revision/1 | |---|---|--| | Calculating the length of arc or the area of a sector of a circle | | https://www.bbc.com/bitesize/guides/zwcqcj6/revision/1 | | Calculating the volume of a standard solid | ◆ sphere, cone, pyramid | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Area-Volume-Credit.pdf https://www.bbc.com/bitesize/guides/z9bdb82/revision/1 | | (Rounding to a given number of significant figures) | | https://www.bbc.com/bitesize/guides/zpc82hv/revision/1 | | Calculating the area of a triangle using trigonometry | | | | Using the sine and cosine rules to find a side or angle | Sine rule for side or angle Cosine rule for side Cosine rule for angle | https://www.bbc.com/bitesize/guides/zytbh39/revision/1 https://www.bbc.com/bitesize/guides/z84297h/revision/1 https://www.bbc.com/bitesize/guides/zqwhjty/revision/1 | | Using bearings with trigonometry | ◆ To find a distance or direction | | ### National 5 Mathematics Course outline October | Skill | Content | Website Links | |---|--|---| | Working with | Use reverse percentages to calculate an original quantity Appreciation including compound interest | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Percentages-Credit.pdf | | | | https://www.bbc.com/bitesize/guides/z8tv6yc/revision/1 | | percentages | | https://www.bbc.com/bitesize/guides/z37pqhv/revision/1 | | | ◆ Depreciation | | | Working with fractions | Operations and combinations of operations on fractions including mixed numbers | https://www.bbc.com/bitesize/guides/z2b83k7/revision/1 | | | (Addition, subtraction, multiplication, division) | | | Working with 2D vectors | Adding or subtracting two- | Working with 2D vectors. | | | dimensional vectors using directed line segments | Working with 3D coordinates. | | Working with 3D | Determining coordinates of a point
from a diagram representing a 3D
object | <u>Vector components.</u> | | coordinates | | Calculating the magnitude of a vector. | | Using vector components | Adding or subtracting two- or three-dimensional vectors using components Magnitude of a two or three dimensional vector | | | Comparing data sets using statistics | Compare data sets using calculated/determined: | https://www.bbc.com/bitesize/guides/z94297h/revision/1 | | | ♦ interquartile range | | | | ◆ standard deviation | | | Forming a linear model from a given set of data | Determine the equation of a best-
fitting straight line on a
scattergraph and use it to estimate
y given x | https://www.bbc.com/bitesize/guides/zq7s2nb/revision/1 | ## National 5 Mathematics Course outline November/December | November Mini Prelim | | | |--|---|---| | Working with linear equations and inequations | ◆ Coefficients are a member of Z◆ Solutions are a member of Q | https://www.bbc.com/bitesize/guides/zwgdb82/revision/1 | | Working with simultaneous equations | ◆ Construct from text◆ Graphical solution◆ Algebraic solution | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Simultaneous-Equations-Credit.pdf https://www.bbc.com/bitesize/guides/z8gdb82/revision/1 | | Changing the subject of a formula | Linear equation Equation involving a simple square or square root | https://www.bbc.com/bitesize/guides/zx2n7p3/revision/1 | | Working with quadratic equations | Revise ◆ Solving from factorised form ◆ Solving using the quadratic formula Then ◆ Graphical treatment ◆ Know and use the discriminant ◆ Determine the number or nature of roots | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Quadratic-Equations-Credit.pdf The Quadratic Formula. Using the discriminant to determine the number or nature of roots. | | Applying the Pythagoras' theorem | Using Pythagoras' theorem in
complex situations including
converse and 3D | https://www.bbc.com/bitesize/guides/zq8x8mn/revision/1 | | Applying the properties of shapes to determine an angle involving at least two steps | Quadrilaterals/triangles/polygons/circles Relationship in a circle between the centre, chord and perpendicular bisector | https://www.bbc.com/bitesize/guides/z3y9y4j/revision/1 | | Using similarity | ◆ Interrelationship of scale — length,
area and volume | http://www.national5maths.co.uk/wp-content/uploads/2016/01/Similarity-Credit.pdf https://www.bbc.com/bitesize/guides/zxmfmsg/revision/1 | ## National 5 Mathematics Course outline January/February | | January Prelim | | | |--|---|--|--| | Skill | Content | Website Links | | | Recognise and determine the equation of a quadratic function | ◆ Equations of the form $y = kx^2$
and $y = (x + p)^2 + q$; k, p, q ∈ Z
◆ Also $y = k(x + p)^2 + q$, k ∈ Z | https://www.bbc.com/bitesize/guides/zcwhjty/revision/1 | | | Sketching a quadratic function | Also y = k(x + p) + q, k ∈ Z Equations of the form y = (x - m)(x - n) Also y = k(x + p)² + q, k ∈ Z | https://www.bbc.com/bitesize/guides/zq2fmsg/revision/1 | | | Identifying features of a quadratic function | Identify nature, coordinates of turning point and the equation of the axis of symmetry of a quadratic of the form y = (x + p)² + q where k = 1 or −1 | https://www.bbc.com/bitesize/guides/zxqpqhv/revision/1 | | | Working with the graphs of trigonometric functions | Basic graphs Amplitude Vertical translation Multiple angle Phase angle | http://www.national5maths.co.uk/wp-content/uploads/2016/01/TrigGraphs-Eqns-Credit.pdf https://www.bbc.com/bitesize/guides/zwbwgdm/revision/1 | | | Working with trigonometric relationships in degrees | Sine, cosine and tangent of angles 0°-360° Period Related angles Solve basic equations Identities cos²x + sin²x = 1 tanx = sinx/cosx | | | ## National 5 Mathematics Course outline February/March **Exam Revision: 100 N5 Exam type questions and answers.** **Past Papers**