

200 Higher Maths Exam Type Questions

www.highermathematics.co.uk

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Scalar Product:
a.b =
$$|\mathbf{a}||\mathbf{b}|\cos \theta$$
, where θ is the angle between \mathbf{a} and \mathbf{b}
or
a.b = $a_1b_1 + a_2b_2 + a_3b_3$ where $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.

Trigonometric formulae:

$$sin (A \pm B) = sin A cos B \pm cos A sin B$$
$$cos (A \pm B) = cos A cos B \mp sin A sin B$$
$$sin 2A = 2 sin A cos A$$
$$cos 2A = cos^{2} A - sin^{2} A$$
$$= 2 cos^{2} A - 1$$
$$= 1 - 2 sin^{2} A$$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x)dx$
sin ax	$-\frac{1}{a}\cos ax + c$
cos ax	$\frac{1}{a}\sin ax + c$

Clear, easy to follow, step-by-step worked solutions to all 200 questions available in the *Higher Maths Online Study Pack* at *www.highermathematics.co.uk*

highermathematics.co.uk

1	Show that $(x - 1)$ is a factor of $f(x) = 2x^3 + x^2 - 8x + 5$. Hence fully factorise $f(x)$ fully.	
2	Express $x^2 + 8x + 3$ in the form $(x + p)^2 + q$ and state the coordinates of the turning point of the parabola.	
3	Evaluate: $log_5 2 + log_5 50 - log_5 4$	
4	What is the solution of the equation $2sinx - \sqrt{3} = 0$ where $\frac{\pi}{2} \le x \le \pi$?	
5	Given that $0 \le a \le \frac{\pi}{2}$ and $sina = \frac{3}{5}$, find an expression for $sin(x + a)$.	
6	If = $4x^3 + 5x^2 - 3x + 2$, find $\frac{dy}{dx}$.	
7	Find the coordinates of the turning points of the curve with equation $y = x^3 - 3x^2 - 9x + 12$ and determine their nature.	
8	Find $\int (2x^{-4} + \cos 5x) dx$.	
9	$\frac{dy}{dx} = 8x - 3$. If $y = 7$ when $x = 2$, find an equation for y.	
10	The expression $\sqrt{3}sinx^\circ - cosx^\circ$ can be written in the form $ksin(x - a)^\circ$, where $k > 0$ and $0 \le a < 360$. Calculate the values of k and a.	

11 A function f is given by $f(x) = \sqrt{9 - x^2}$. What is a suitable domain of f?	
12 The diagram shows the graph with equation of the form $y = acosbx$ for $0 \le x \le 2\pi$. What is the equation of this graph?	
13 E(-2, -1, 4), P(1, 5, 7) and F(7, 17, 13) are three collinear points. P lies between E and F. What is the ratio in which P divides EF?	
14 Vectors p and q are such that $ p = 3$, q = 4 and $p. q = 10$. Find the value of $q. (p + q)$.	
15 Write down the exact values of $sin60^{\circ}$ and $tan \frac{\pi}{6}$.	
16 The diagram shows a line L; the angle between L and the positive direction of the x-axis is 135°, as shown. What is the gradient of the line L?	
17 The vertices of triangle ABC are $A(7,9), B(-3,-1)$ and $C(5,-5)$ as shown in the diagram. Find the equation of the median from C.	
18 The x-axis is a tangent to a circle with centre $(-7, 6)$ as shown in the diagram. What is the equation of the circle?	
19 A sequence is defined by the recurrence relation $u_{n+1} = 0.3u_n + 6$ with $u_{10} = 10$ What is the value of u_{12} ?	
20 The diagram shows graphs with equations $y = 14 - x^2$ and $y = 2x^2 + 2$. Calculate the shaded area.	

31	Functions f and g are given by $f(x) = 3x + 1$ and $g(x) = x^2 - 2$. Find $f(g(x))$ and $g(f(x))$.	
32	The diagram shows the graph of $y = f(x)$ where f is a logarithmic function. What are the values of a and b for $(x) = log_a(x - b)$?	
33	The vectors $\boldsymbol{u} = \begin{pmatrix} k \\ -1 \\ 1 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 0 \\ 4 \\ k \end{pmatrix}$ are perpendicular. What is the value of k ?	
34	D, E and F have coordinates $(10, -8, -15)$, (1, -2, -3) and $(-2, 0, 1)$ respectively. Show that D, E and F are collinear and find the ratio in which E divides DF.	
35	Prove that $\frac{\cos^3 x}{1-\sin^2 x} = \cos x.$	
36	The line L passes through the point $(-2, -1)$ and is parallel to the line with equation 5x + 3y - 6 = 0. What is the equation of L?	
37	Triangle PQR has vertices at $P(-3, -2)$, $Q(-1, 4)$ and $R(3, 6)$. PS is a median. What is the gradient of PS?	
38	The diagram shows a circle, centre (2, 5) and a tangent drawn at the point (7, 9). What is the equation of this tangent?	
39	A sequence is generated by the recurrence relation $u_{n+1} = 0.4u_n - 240$. What is the limit of this sequence as $\rightarrow \infty$?	
	Calculate the shaded area enclosed by the curve $y = x^3(3-x)$ and the x-axis between $x = 0$ and $x = 3$.	

41 The graph has an equation of the form $y = k(x - a)(x - b)$. What is the equation of the graph?	
42	
For what values of x is $6 + x - x^2 < 0$?	
43	
Express $log_a 25 + log_a 4 - log_a 20$ as the logarithm of a single number.	
44	
Solve $cos2x - 3cosx + 2 = 0$ for $0 \le x < 360$.	
45 The diagram shows two right	
40 The diagram shows two right-	
angled triangles with sides and	
angles given. What is the value $\sqrt{\sqrt{5}}$	
of $\sin(p+q)$?	
\bigvee_{p}	
46 What is the derivative of $(x^3 + 4)^2$?	
47 The point $D(F, 12)$ lies on the sume with	
The point $P(5, 12)$ lies on the curve with	
equation $y = x^2 - 4x + 7$. Find the	
equation of the tangent to the curve.	
48 Find $\int 4\sin(2x+3) dx$.	
49 Find $\int_{-2}^{2} (x+1)^2 dx$.	
FO	
50	
Write $2sinx^{\circ} + 3cosx^{\circ}$ in the form	
$ksin(x - a)$, for $k > 0$ and $0 \le a \le 360$.	

51 Functions f and g are defined on a suitable domain by $f(x) = cosx$ and $g(x) = x + \frac{\pi}{6}$. What	
is the value of $f\left(g\left(\frac{\pi}{6}\right)\right)$?	
52 The diagram shows the graph of y = f(x). Sketch $y = f(x + 2) - 1$	
53 Given that $\boldsymbol{u} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$, find $3\boldsymbol{u} - 2\boldsymbol{v}$ in component form.	
54 The vectors $xi + 5j + 7k$ and $-3i + 2j - k$ are perpendicular. What is the value of x ?	
55 Prove that $2\cos^2 A + 3\sin^2 A - 2 = \sin^2 A$.	
56 A line makes an angle of 30° with the positive direction of the <i>x</i> -axis as shown. What is the gradient of the line?	
57 Find the equation of the perpendicular bisector of the line joining $P(3, -3)$ to $Q(-1, 9)$.	
58 Write down the centre and calculate the radius of the circle with equation $x^2 + y^2 + 8x + 4y - 38 = 0$	
59 A sequence is defined by the recurrence relation $u_{n+1} = 2u_n + 3$ and $u_0 = 1$. What is the value of u_3 ?	
60 Calculate the shaded area enclosed by the line y = 2x - 3 and the curve $y = x^2 - 5x - 3$.	

61 Show that $x = 1$ is a root of $x^3 + 8x^2 + 11x - 20 = 0$. Hence factorise $x^3 + 8x^2 + 11x - 20$ fully.	
62 The roots of the equation $kx^2 - 3x + 2 = 0$ are equal. Calculate the value of k.	
63	
Evaluate $log_2 \frac{1}{16}$.	
64 Solve the equation $3\cos 2x + \cos x = -1$ in the interval $0 \le x \le 360$.	
65 The diagram shows a right-angled triangle with sides and angles marked. What is the value of $cos2a$?	
66 $A = 2\pi r^2 + 6\pi r$. What is the rate of change of A with repect to r when $r = 2$?	
67 Find the equation of the tangent to the curve $y = x^3 - 3x^2 + 2x$ at the point where x =1.	
68 Find $\int \frac{1}{3x^4} dx$, where $x \neq 0$.	
69 Evaluate $\int_0^{\frac{\pi}{2}} sin2x + cos2x \ dx.$	
70 Write $3cosx^{\circ} + 4sinx^{\circ}$ in the form $kcos(x + a)$ for $k > 0$ and $0 \le x \le 360$	

71 Functions f and g are defined on the set of real numbers by $f(x) = x^2 + 3$ and $g(x) = x + 4$. Find expressions for $f(g(x))$ and $g(f(x))$.	
72 The diagram shows part of the y graph of $y = log_3(x - 4)$. The point $(q, 2)$ lies on the graph. What is the value of q ?	
73 Given that the ratio $S(-4, 5, 1)$, $T(-16, -4, 16)$ and $U(-24, -10, 26)$ are collinear, calculate the ratio in which T divides SU.	
 74 An equilateral triangle of side 3 units is shown. The vectors p and q are as represented in the diagram. What is the value of p.q? 	
75 Convert 135° into radians and convert $\frac{2\pi}{3}$ into degrees.	
76 Calculate the distance between the points (4, -1) and (7, 3).	
77 A triangle has vertices P(1, 8), Q(-12, -2) and R(8, -6). Calculate the median PS.	
78 The line with equation $y = 2x$ intersects the circle with equation $x^2 + y^2 = 5$ at the points J and K. What are the <i>x</i> -coordinates of J and K?	
79 A sequence is generated by the recurrence relation $u_{n+1} = 0.7u_n + 10$. What is the limit of this sequence as $n \to \infty$?	
80 Calculate the shaded area shown in the diagram. $y = x(x-3)^2$	

81 The diagram shows the graph with equation $y = k(x - 1)^2(x + t)$. What are the values of k and t?	
82 What is the solution of $x^2 + 4x > 0$, where x is a real number?	
83 Find <i>x</i> if $log_x 6 - 2log_x 4 = 1$.	
84 Solve the equation $sin2x - cosx = 0$ in the interval $0 \le x \le 180$.	
85 If <i>a</i> and <i>b</i> are acute angles such that $sina = \frac{4}{5}$ and $sinb = \frac{5}{13}$, find the value of $sin(a + b)$.	
86 If $f(x) = \frac{1}{\sqrt[5]{x'}}, x \neq 0$, what is $f'(x)$?	
87 _{Find the equation of the tangent to the curve with equation $y = x^3 + 2x^2 - 3x + 2$ at the point where $x = 1$.}	
88 Find $\int (2x-1)^{\frac{1}{2}} dx$ where $x > \frac{1}{2}$.	
89 Find $\int_0^1 \frac{dx}{(3x+1)^{\frac{1}{2}}}$	
89 Express $3cosx^{\circ} + 5sinx^{\circ}$ in the form $kcos(x - a^{\circ})$ where $k>0$ and $0 \le a \le 90$.	

91 The functions f and g are defined by $f(x) = x^2 + 1$ and $g(x) = 3x - 4$, on the set of real numbers. Find $f(g(x))$ and $g(f(x))$.	
92 The diagram shows a sketch of a trig function whose equation is of the form $y = asin(bx) + c$. Determine the values of a, b and c.	
93 Show that the points $A(-7, -8, 1)$, $T(3, 2, 5)$ and $B(18, 17, 11)$ are collinear. Find the ratio in which T divides AB.	
94 P,Q and R have coordinates $(1, 3, -1)$, $(2, 0, 1)$ and $(-3, 1, 2)$ respectively. Express the vectors \overrightarrow{QP} and \overrightarrow{QR} in component form. Hence or otherwise find the size of angle PQR.	
95 Find the exact value TAN $\frac{7\pi}{4}$	
96 Find the equation of the line which passes through the point (-1, 3) and is perpendicular to the line with equation $4x + y - 1 = 0$.	
97 A triangle has vertices A(-3, 1), B(4, 3) and C(6, -5). Find the equation of the altitude BP.	
98 A circle C_1 has equation $x^2 + y^2 + 2x + 4y - 27 = 0$. Write down the centre and calculate the radius of C_1 .	
99 A sequence is generated by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 7$, with $u_0 = -2$. What is the limit of this sequence as $n \to \infty$?	
100 Calculate the shaded area shown in the diagram.	

101 A function <i>f</i> is defined on the set of real numbers by $f(x) = x^3 - x^2 + x + 3$. What is the remainder when $f(x)$ is divided by $(x - 1)$?	
102 If $x^2 - 8x + 7$ is written in the form $(x - p)^2 + q$, what is the value of q ?	
103 Given that $log_{10}x = 3log_{10}y + log_{10}2$, express x in terms of y.	
104	
Solve the equation $2\cos 3x = 1$, for $0 \le x \le 360$	
105 The diagram shows a right- angled triangle with sides and angles marked. Find the value of sin2x. 2 $\sqrt{5}$	
10/	
106 If $s(t) = t^2 - 5t + 8$, what is the rate of change of <i>s</i> with respect to <i>t</i> when $t = 3$?	
107 The diagram shows part of the graph of the curve $y = 2x^3 - 7x^2 + 4x + 4$. Find the x-coordinate of the maximum turning point.	
108	
Find $\int x(3x+2)dx$.	
109	
Find $f(x)$ given that $f'(x) = 2 - \frac{1}{x^2}$ and $f(1) = 8$.	
110 Write $1.5cosx^{\circ} + 2sinx^{\circ}$ in the form $kcos(x + a)^{\circ}$, where $0 \le a \le 180$.	

111	
A function <i>f</i> is defined on a suitable domain by	
$f(x) = \frac{x+2}{x^2 - 7x + 12}.$	
What value(s) of x cannot be in this domain?	
112 I ^y	
The graph of $y = f(x)$ is	
shown . Sketch the graphs	
of $y = -f(x)$ and	
y = -f(x) + 3.	
113	
The point Q divides the line joining $P(-1, -1, 0)$ to $P(-1, -1, 0)$ in the ratio 2:1. Find the coordinates	
R(5, 2, -3) in the ratio 2: 1. Find the coordinates of Q.	
114 (-3) (1)	
If $\boldsymbol{u} = \begin{pmatrix} -3 \\ 1 \\ 2t \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} 1 \\ t \\ -1 \end{pmatrix}$ are perpendicular,	
(2t) $(-1)what is the value of t?$	
115 Prove the identity:	
$2\cos^2 x - 1 = 1 - 2\sin^2 x$	
11/	
A line makes an angle of 45° with the positive	
direction of the <i>x</i> -axis. What is its gradient?	
117	
Triangle ABC has vertices $A(-1, 6), B(-3, -2)$	
and $C(5, 2)$. Find the equation of the line q, the	
perpendicular bisector of BC.	
118	
The point P(2, 3) lies on the circle	
$(x + 1)^2 + (y - 1)^2 = 13.$	
Find the equation of the tangent at P.	
119	
A sequence is defined by the recurrence relation	
$u_{n+1} = \frac{1}{3}u_n + 1$, with $u_2 = 15$.	
What is the value of u_4 ?	
120 Calculate the area enclosed y^{+}	
between the curves	
$y = x^2 - x + 3$ and	
$y = 3 + 2x - x^2$.	

121 The diagram shows the graph of a cubic. What is the equation of this cubic? 122	
If $f(x) = (x - 3)(x + 5)$, for what values of x is the graph of $y = f(x)$ above the x-axis?	
Simplify $5log_82 + log_84 - log_816$	
124 Solve $4sin^2x = 3$ for $0 \le x \le 360$.	
125 If $cosA = \frac{5}{13}$ and $sinB = \frac{4}{5}$, show that $sin(A + B) = \frac{56}{65}$.	
126 Given that $f(x) = 4sin3x$, find $f'(0)$.	
127 A curve has equation $y = x - \frac{16}{\sqrt{x}}$, $x > 0$. Find the equation of the tangent at the point where $x = 4$.	
128 Find $\int (1-6x)^{-\frac{1}{2}} dx$ where $x < \frac{1}{6}$.	
129 $\frac{dy}{dx} = 6x^2 - 4x + 3.$ If $y = 5$ when $x = 1$, find an equation for y .	
130 Express $8cosx^{\circ} - 6sinx^{\circ}$ in the form $kcos(x + a)^{\circ}$ where $k > 0$ and $0 < a < 360$.	

131 $f(x) = 3 - x$ and $g(x) = \frac{3}{x}, x \neq 0$. Find $p(x) = f(g(x))$.	
Find $p(x) = f(g(x))$. If $q(x) = \frac{3}{3-x}$, $x \neq 3$, find $p(q(x))$ in its simplest form.	
132 The diagram shows $y = f(x)$. Sketch the graphs of $y = -2f(x)$ and $y = f(x - 3)$.	
133 Show that the points P(3, 2, 6), Q(5, -2, 10) and R(9, -10, 18) are collinear.	
134	
Find the magnitude between the origin and the point 'a' (3, 4, 0)	
135 Prove the identity: cosAtanA = sinA.	
136	
Find the equation of the straight line through (1, -7) perpendicular to the line $y - 2x = 30$.	
137	
Find the equation of the median from C for a triangle with vertices A(1, -7) ,B(-4, 7) and C(-1, 3).	
138	
Find the equation of the tangent to the circle $x^2 + y^2 - 10y - 43 = 0$ at the point (2, -3).	
139 A sequence is generated by the recurrence relation $u_{n+1} = 0.4u_n - 30$. What is the limit of the sequence as $\rightarrow \infty$?	
140 Calculate the shaded area shown in the diagram. y	

141 Show that $(x - 4)$ is a factor of $x^3 - 5x^2 + 2x + 8$. Hence, fully factorise and solve $x^3 - 5x^2 + 2x + 8$.	
142	
Solve $6 - x - x^2 < 0$	
143 Before a forest fire was brought under control, the spread of the fire was described by a law of the form $A = A_0 e^{kt}$ where A_0 is the area covered by the fire when it was first detected and A is the area covered by the fire t hours later. If it takes 1.5 hours for the area of the forest fire to double, find the value of the constant k.	
144 Solve $2\sin(2x - 60)^\circ = 1$ for $0 \le x \le 360$.	
145 Using $75^{\circ} = 45^{\circ} + 30^{\circ}$, show that $sin75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$.	
146 If $y = 3x^{-2} + 2x^{\frac{3}{2}}$, $x > 0$, determine $\frac{dy}{dx}$.	
147 The parabola with equation $y = x^2 - 14x + 53$ has a tangent at the point P(8, 5). Find the equation of this tangent.	
148	
Find $\int \frac{(x^2-2)(x^2+2)}{x^2} dx$, $x \neq 0$	
149 The curve $y = f(x)$ is such that $\frac{dy}{dx} = 4x - 6x^2$. The curve passes through the point (-1, 9). Express y in terms of x.	
150 Express $3cosx^{\circ} + 4sinx^{\circ}$ in the form $kcos(x - a)^{\circ}$ Hence, solve $3cosx^{\circ} + 4sinx^{\circ} = 5$	

$f(x) = 8x^2 - 5$ and $g(x) = 5 + x$	
Find $f(g(x))$ and $g(f(x))$.	
152 The diagram shows the graph of a function $y = f(x)$. Sketch the graphs of: y = f(x - 4) and $y = 2 + f(x - 4)$.	x
153 A(0, -3, 5), B(7, -6, 9) and C(21, -12, 17). Show that A, B and C are collinear, stating the ratio AB:BC.	
154 is the point (-1, 2, -1) and Q is (3, 2, -4). Write down PQ in component form. Calculate the length of \overrightarrow{PQ} . Find the components of a unit vector which is parallel to \overrightarrow{PQ} .	
155 Prove the identity:	
$cos^2Qtan^2Q = 1 - cos^2Q$	
156 The point A has coordinates (7, 4). The straight lines with equations $x + 3y + 1 = 0$ and $2x + 5y = 0$ intersect at B. Find the gradient of AB.	
 157 A triangle has vertices A(5, 5), B(-10, 0) and C(0, -10). Find the equation of the altitude from A. 	
158 A circle has centre C(-2, 3) and passes through P(1, 6). Find the equation of the circle. Q = 0	
159 A sequence is defined by the recurrence relation $u_{n+1} = 0.8u_n + 12$, $u_0 = 4$. State why this sequence has a limit and find this limit.	
160 Calculate the area between the line $y = x + y = 18$ and the curve $y = x^2 - 8x + 18$.	

161 Show that $(x + 2)$ is a factor of $f(x) = x^3 - 2x^2 - 4x + 8$ and hence fully factorise $f(x)$.	
162 Calculate the discriminant of the quadratic equation $2x^2 + 4x + 5 = 0$	
163	
Solve the equation $log_4(5-x) - log_4(3-x) = 2$, x < 3.	
164	
Find all the values of x in the interval $0 \le x \le 2\pi$ for which $tan^2(x) = 3$.	
165	
Show that the exact value of $cos 2x$ is $\frac{7}{25}$.	
166	
If $y = 3\cos^4 x$, find $\frac{dy}{dx}$.	
167 A curve has equation $y = x^3 - 3x^2 - 9x + 12$. Find the coordinates of the stationary points of this curve and determine their nature.	
168	
Find $\int \frac{4x^3 - 1}{x^2} dx, x \neq 0.$	
169	
Find the value of $\int_0^2 \sin(4x+1) dx$.	
170 A curve has equation $y = 7sinx - 24cosx$. Express $7sinx - 24cosx$ in the form $ksin(x - a)$ where $k > 0$ and $0 \le a \le \frac{\pi}{2}$.	

171 $f(x) = 3x - 1 \text{ and } g(x) = \frac{1}{x+1}$ Find $f(g(x))$ and $g(f(x))$. State a suitable domain for $g(f(x))$.	
172 The diagram shows the graph $y = g(x)$. a. Sketch $y = -g(x)$ b. Sketch $y = 3 - g(x)$	
173 If $f = 3i + 2k$ and $g = 2i + 4j + 3k$, Find $ f + g $.	
174 Express the vectors \overrightarrow{TA} and \overrightarrow{TB} in component form. Calculate the angle between \overrightarrow{TA} and \overrightarrow{TB} .	
Prove the identity: $(cosP^{\circ} + sinP^{\circ})^{2} = 2sinP^{\circ}cosP^{\circ} + 1$	
176 Find the equation of the line ST, where T is the point (-2, 0) and angle STO is 60° .	
177 Triangle ABC has vertices A(-1, 12), B(-2, -5) and C(7, -2). Find the equation of the altitude AE.	
178 Show that the line with equation $y = 6 - 2x$ in a tangent to the circle with equation $x^2 + y^2 + 6x - 4y - 7 = 0$ and find the coordinates of the point of contact of the tangent and the circle.	
179 A sequence is defined by the recurrence relation $u_{n+1} = 0.2u_n + 5$ with $u_8 = 20$. Calculate u_{10} .	
180 Calculate the area enclosed between the curve $y = x^2 - 6x$ and the x-axis.	

181 Show that $(3x + 1)$ is a factor of	
$g(x) = 3x^3 + 4x^2 - 5x - 2.$	
Hence fully factorise $g(x)$.	
182	
Coluce 1 $2x^2 > 0$ where x is a real number	
Solve $1 - 2x - 3x^2 > 0$, where x is a real number.	
183	
Solve the equation $log_2(x + 1) - 2log_2 = 3$.	
184	
Solve $2tan3x + 2 = 0$ for $0 \le x \le 360$.	
185	
185 _{A right-angled triangle has}	
sides and angles as shown in $\sqrt{34}$ 3	
the diagram. What is the	
value of $sin2a$?	
186	
100	
Given that $y = \sin(x^2 - 3)$, find $\frac{dy}{dx}$.	
$dx = \frac{dx}{dx}$	
187	
A curve has equation $y = 3x^2 - x^3$. Find the	
coordinates of the stationary points on this curve	
and determine their nature.	
188	
Find $\int (2x+9)^5 dx$	
189	
$r = 1 \int_{-\infty}^{2} \sqrt{4 + 1} dr$	
Find $\int_0^2 \sqrt{4x+1} dx$.	
190	
Express $f(x) = \sqrt{3}cosx + sinx$ in the form	
$ksin(x + a)$, where $k > 0$ and $0 < a < \frac{n}{2}$.	
1	1

191 A function <i>f</i> , defined on a suitable domain, is	
given by $f(x) = \frac{6x}{x^2 + 6x - 16}$.	
What restrictions are there on the domain of f ?	
192 The diagram shows part of the graph of y = f(x). Sketch the graph of $y = 2f(x) + 1$ O 2 5 x	
193 p = -i + 3j + 4k and $q = 7i - j + 5ka) Express \overrightarrow{PQ} in component form.b) Find the length of PQ.$	
194 (1) (2)	
The vectors $\boldsymbol{u} = \begin{pmatrix} 1 \\ k \\ k \end{pmatrix}$ and $\boldsymbol{v} = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}$ are perpendicular. What is the value of k?	
195 Show that: $(1 + 2sinx)(1 - 2sinx) = 4cos^2x - 3$	
196	
Find the equation of the line through the point (-1, 4) which is parallel to the line with equation $3x - y + 2 = 0$.	
197	
A triangle has vertices P(-2, 2), Q(6, 6) and R(6, -4) Find the equation of the perpendicular bisector of PR.	
198	
Find P and Q, the points of intersection of the line $y = 3x - 5$ and the circle C_1 with equation $x^2 + y^2 + 2x - 4y - 15 = 0$.	
199	
A sequence is defined by the recurrence relation	
$u_{n+1} = \frac{1}{4}u_n + 16, \ u_0 = 0.$	
Calculate the values of u_1 , u_2 , and u_3 .	
200 Calculate the shaded area between the curve $y = -x^2 + 7x - 10$ and the <i>x</i> -axis.	

Answers Only - Full Worked Solutions in the Online Study Pack at *www.highermathematics.co.uk*

Ques 1 - 20	Ques 21 - 40
1. $f(x) = (x - 1)(2x + 5)(x - 1)$	21. f(x) = (x - 1)(x + 2)(x - 1)
2. $(x + 4)^2 - 13$ Min T.P at $(-4, -13)$	22. $q = 5$
3. 2	23. $x = 2$
4. $x = \frac{2\pi}{2}$ for $\frac{\pi}{2} \le x \le \pi$	24. $x = \frac{\pi}{6}, \frac{11\pi}{6}$
5. $\sin(x+a) = \frac{4}{5}\sin x + \frac{3}{5}\cos x$	25. $\cos 2x = \frac{-3}{5}$
6. $\frac{dy}{dx} = 12x^2 + 10x - 3$	26. $f'(x) = 3x(4 - 3x^2)^{\frac{-3}{2}}$
7. Max T.P at $(-1, 17)$ and Min T.P. at $(3, -15)$	20. $f(x) = 5x(4 - 5x)^2$ 27. <i>Max</i> T.P. at (-1, 4) and Min T.P. at (1, 0)
8. $\frac{-2x^{-3}}{3} + \frac{1}{5}sin5x + C$	$28.\frac{8}{3}x^{\frac{3}{2}} - \frac{1}{2}x^{-2} + C$
9. $y = 4x^2 - 3x - 3$	5 2 -
10. $k = 2$ and $a = 30^{\circ}$	$29. \ y = \frac{-1}{3}\cos 3x + \frac{7}{6}$
10. x = 2 and $x = 5011. x \le 3$	$30.\sqrt{2}\sin\left(x-\frac{\pi}{4}\right)$
12. a = 2 b = 3	31. $f(g(x)) = 3x^2 - 5 g(f(x)) = 9x^2 + 6x - 1$
13. 1:2	32. $a = 3$ $b = 3$
14. 26	33. $k = 4$
15. $sin60 = \frac{\sqrt{3}}{2} tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$	34. $\overrightarrow{DE} = 3\overrightarrow{EF}$ so \overrightarrow{DE} and \overrightarrow{EF} are parallel. E is a
2 0 43	common point so D,E,F are collinear.
16. m = -1	35. Proof. 36. $3y + 5x = -13$
17. y = -3x + 10 $18. (x + 7)^{2} + (y - 6)^{2} = 36$ 19. y = 8.7	30. $3y + 3x = -13$ 37. $m_{PS} = \frac{7}{4}$
13. (x + 7) + (y - 6) = 30 19. $u_{12} = 8.7$	7
20. Area = 32 square units	38. $4y + 5x = 71$ 39. $L = -400$
	2
Ques 41 - 60	40. Area = $12\frac{3}{20}$ square units.
41. Y = 3(x - 1)(x - 4)	Ques 61 - 80 61. $(x - 1)(x + 4)(x + 5)$
$\begin{array}{c} 41.1 - 3(x - 1)(x - 4) \\ 42.x > 3 x < -2 \end{array}$	
$43. \log_a 5$	62. $k = \frac{9}{8}$
$44. x = 0^{\circ}, 60^{\circ}, 300^{\circ}, 360^{\circ}$	634
45. $\sin(p+q) = \frac{2+2\sqrt{5}}{3\sqrt{5}}$	64. $x = 60^{\circ}, 132^{\circ}, 228^{\circ}, 300^{\circ}$
$46. \frac{dy}{dx} = 6x^5 + 24x^2$	$\begin{array}{l} 65. \ cos2a = \frac{7}{25} \\ 66. \ 14\pi \end{array}$
	67. y = -x + 1
$47. y = 6x - 18482 \cos(2x + 3) + C$	$68. \frac{x^{-3}}{-9} + C$
	, , , , , , , , , , , , , , , , , , ,
$49.9\frac{1}{3}$	69.1
$50.\sqrt{13}\sin(x-303.7)$	70. $5\cos(x + 306.9^\circ)$ 71. $f(g(x)) = x^2 + 8x + 19 \ g(f(x)) = x^2 + 7$
51. 0.5	71. g(x) = x + 6x + 15 g(f(x)) = x + 7 72. g = 13
52. Correct shape, Min T.P at $(-4, -4)$ Max T.P. at $(-1, 1)$	73. 3:2
$53. \begin{pmatrix} 0 \\ -4 \\ -5 \end{pmatrix}$	$74.\frac{9}{2}$
	75. $120^{\circ} = \frac{3\pi}{4}$ and $\frac{2\pi}{3} = 120^{\circ}$
54. $x = 1$	76. 5 units
55. Proof	77. $y = 4x + 4$
56. $m = \frac{1}{\sqrt{3}}$	78. $J(-1, -2)$ $K(1, 2)$
57.3y - x - 8 = 0	79. $l = 100/3$
58. Centre $(-4, -2)$ radius= $\sqrt{58}$	80. Area = $\frac{27}{4}$ square units
$59. u_3 = 29$	*

60. Area = $57\frac{1}{2}$ square units	
Ques 81 - 100	Ques 101 - 120
81. $K = -2$ and $t = -5$	1014
82. $x > 0$ $x < -4$	102.q = -9
83. $x = \frac{3}{2}$	$103x = 2y^3$
84. $x = 30^{\circ}, 90^{\circ}, 150^{\circ}$	$104.x = 20^{\circ}, 100^{\circ}, 140^{\circ}, 220^{\circ}, 260^{\circ}, 340^{\circ}$
$85.\sin(a+b) = \frac{63}{65}$	$105.sin2x = \frac{4}{5}$
03	106. 1
86. $f'(x) = -\frac{1}{5}x^{-\frac{6}{5}}$	107Max T.P. when $x = \frac{1}{2}$
87. $y = 4x - 2$	$108.x^3 + x^2 + c$
$88. \frac{(2x-1)^{\frac{3}{2}}}{2} + C$	
5	$109.7(x) = 2x + \frac{1}{x} + \frac{1}{3}$
$89.\frac{2}{2}$	$109.f(x) = 2x + \frac{1}{x} + 5$ 110.2.5cos (x + 306.9)° 111.x \neq 3 and x \neq 4
$90\sqrt[3]{34}\cos{(x-59.0)^{\circ}}$	
91. $f(g(x)) = 9x^2 - 24x + 17$ $g(f(x)) = 3x^2 - 1$	112Correct shape drawn and labelled with $\begin{pmatrix} 0 & 2 \end{pmatrix}$ (2.1) (5.2)
92. $a = 4 b = 2 c = 1$	(0,3), (3,1), (5, 3) 113. <i>Q</i> (3, 1, -2)
93. 3:2	114.t=-3
94. $\theta = 72^{\circ}$	115.Proof.
95. -1	116.m = 1
96. $y = \frac{1}{4}x + \frac{13}{4}$	117.y = -2x + 2
97. $y = \frac{4}{3}x - 3$	$118.y = -\frac{3}{2}x + 6$
98. Centre (-1, -2) Radius $\sqrt{32}$	$119.u_4 = 3^2$
98. Centre (-1, -2) Radius V32 99. $L = \frac{28}{3}$	-
5	120. 9/8
100 Aroa = 0 cavaro unite	
100Area = 9 square units	
Ques 121 - 140	Ques 141 - 160
Ques 121 - 140 121. $y = -x(x+1)(x-2)$	141.(x-4)(x-2)(x+1)
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$	141.(x-4)(x-2)(x+1) 142.x < -3 and x > 2
Ques 121 - 140 121. $y = -x(x+1)(x-2)$	141.(x-4)(x-2)(x+1)
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^\circ, 120^\circ, 240^\circ, 300^\circ$ 125.Proof.	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12	141.(x - 4)(x - 2)(x + 1) 142.x < -3 and x > 2 143.k = 0.46 $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ $128\frac{(1-6x)^{\frac{1}{2}}}{3} + C$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 \text{ and } x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $QR = 2PQ$ and Q is a common point so P, Q, R are	141. $(x - 4)(x - 2)(x + 1)$ 142. $x < -3$ and $x > 2$ 143. $k = 0.46$ 144. $x = 45^{\circ}$, 105°, 225°, 285° 145.Proof. 146. $\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ 147. $y = 2x - 11$ 148. $\frac{x^{3}}{3} + 4x^{-1} + C$ 149. $y = 2x^{2} - 2x^{3} + 5$ 150. $x = 53.1^{\circ}$, 413.1° 151. $f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ 152. $y = f(x - 4)$ passing through (0,5), (5, a) $y = 2 + 10^{10}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $Q\vec{R} = 2P\vec{Q}$ and Q is a common point so P, Q, R are collinear.	141. $(x - 4)(x - 2)(x + 1)$ 142. $x < -3$ and $x > 2$ 143. $k = 0.46$ 144. $x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ 145.Proof. 146. $\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ 147. $y = 2x - 11$ 148. $\frac{x^{3}}{3} + 4x^{-1} + C$ 149. $y = 2x^{2} - 2x^{3} + 5$ 150. $x = 53.1^{\circ}, 413.1^{\circ}$ 151. $f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ 152. $y = f(x - 4)$ passing through (0,5), (5, a) $y = 2 + f(x - 4)$ passing through (0,7), (5, a + 2) 153.AB:BC = 1:2
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $Q\vec{R} = 2P\vec{Q}$ and Q is a common point so P, Q, R are collinear. 134. 5	141. $(x - 4)(x - 2)(x + 1)$ 142. $x < -3$ and $x > 2$ 143. $k = 0.46$ 144. $x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ 145.Proof. 146. $\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ 147. $y = 2x - 11$ 148. $\frac{x^{3}}{3} + 4x^{-1} + C$ 149. $y = 2x^{2} - 2x^{3} + 5$ 150. $x = 53.1^{\circ}, 413.1^{\circ}$ 151. $f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ 152. $y = f(x - 4)$ passing through (0,5), (5, a) $y = 2 + f(x - 4)$ passing through (0,7), (5, a + 2) 153.AB:BC = 1:2
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof.	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit vector = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{3}{5} \end{pmatrix}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof. 136. $y = -\frac{1}{2}x + \frac{13}{2}$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit \text{ vector } = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{3}{5} \end{pmatrix}$ $155.Proof.$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ $128\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof. 136. $y = -\frac{1}{2}x + \frac{13}{2}$ 137. $y = 6x + 9$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit vector = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{3}{5} \end{pmatrix}$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof. 136. $y = -\frac{1}{2}x + \frac{13}{2}$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit vector = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{3}{5} \end{pmatrix}$ $155.Proof.$ $156.m = 3$ $157.y = x$ $158.(x + 2)^{2} + (y - 3)^{2} = 18$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof. 136. $y = -\frac{1}{2}x + \frac{13}{2}$ 137. $y = 6x + 9$ 138. $y = \frac{1}{4}x - \frac{7}{2}$ 139. $L = -50$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit vector = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{-3}{5} \end{pmatrix}$ $155.Proof.$ $156.m=3$ $157.y = x$ $158.(x + 2)^{2} + (y - 3)^{2} = 18$ $159.L = 60$
Ques 121 - 140 121. $y = -x(x + 1)(x - 2)$ 122. $x < -5$ and $x > 3$ 123.1 124. $x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ 125.Proof. 126.12 127. $y = 2x - 12$ 128. $-\frac{(1-6x)^{\frac{1}{2}}}{3} + C$ 129. $y = 2x^{3} - 2x^{2} + 3x + 2$ 130. $10\cos(x + 36.9)^{\circ}$ 131. $p(x) = 3 - \frac{3}{x}$ and $p(q(x)) = x$ 132. $y = -2f(x)$ passing through (-6, 0), (1, 14), (3, 0) and $y = f(x - 3)$ passing through (-3, 0), (4, -7), (6, 0) 133. $\overline{QR} = 2\overline{PQ}$ and Q is a common point so P, Q, R are collinear. 134. 5 135.Proof. 136. $y = -\frac{1}{2}x + \frac{13}{2}$ 137. $y = 6x + 9$ 138. $y = \frac{1}{4}x - \frac{7}{2}$	$141.(x - 4)(x - 2)(x + 1)$ $142.x < -3 and x > 2$ $143.k = 0.46$ $144.x = 45^{\circ}, 105^{\circ}, 225^{\circ}, 285^{\circ}$ $145.Proof.$ $146.\frac{dy}{dx} = -6x^{-3} + 3x^{\frac{1}{2}}$ $147.y = 2x - 11$ $148.\frac{x^{3}}{3} + 4x^{-1} + C$ $149.y = 2x^{2} - 2x^{3} + 5$ $150.x = 53.1^{\circ}, 413.1^{\circ}$ $151.f(g(x)) = 8x^{2} + 80x + 195 g(f(x)) = 8x^{2}$ $152.y = f(x - 4) \text{ passing through } (0,5), (5, a) y = 2 + f(x - 4) \text{ passing through } (0,7), (5, a + 2)$ $153.AB:BC = 1:2$ $154.Unit vector = \begin{pmatrix} \frac{4}{5} \\ 0 \\ -\frac{3}{5} \end{pmatrix}$ $155.Proof.$ $156.m = 3$ $157.y = x$ $158.(x + 2)^{2} + (y - 3)^{2} = 18$

Ques 161 - 180	Ques 181 - 200
161.(x+2)(x-2)(x-2)	181.3(3x+1)(x+2)(x-1)
$162.b^2 - 4ac = -24$	$1821 < x < \frac{1}{2}$
$163.x = \frac{43}{15}$	183.x = 71
$163.x = \frac{43}{15}$ 164.x = $\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$	184. $x = 45^{\circ}, 105^{\circ}, 165^{\circ}, 225^{\circ}, 285^{\circ}, 345^{\circ}$
165. <i>Proof</i> .	$185.sin2a = \frac{15}{17}$
$166.\frac{dy}{dx} = -12sinxcos^3x$	$186. \frac{dy}{dx} = 2x\cos(x^2 - 3)$
167. <i>Max T</i> .P at (-1, 17). Min T.P at (3, -15).	187.Min T.P at (0,0) Max T.P at (2,4)
$168.2x^2 + \frac{1}{x} + C$	$188. \frac{(2x+9)^6}{12} + C$ $189. \frac{13}{3}$
169.0.363 radians	$189.\frac{13}{12}$
$170.25\sin(x - 1.287)$ (in radians)	$190.2\sin(x+\frac{\pi}{2})$
$171.f(g(x)) = \frac{-x+2}{x+1} g(f(x)) = \frac{1}{3x}$	5
172.y = -g(x) passes through $(a, -2), (0, -1), (b, -3)$	191. $x \neq -8$, $x \neq 2$ 192. $y = 2f(x) + 1$ passes through (0, 1) (2, 7) (5, 1)
y = 3 - g(x) passes through (a, 5), (0, 2), (b, 0)	192. $y = 2f(x) + 1$ passes through (0, 1), (2, 7), (5, 1)
173. $ f + g = \sqrt{66}$	193. $\overrightarrow{PQ} = \begin{pmatrix} 8\\ -4\\ 1 \end{pmatrix} \overrightarrow{PQ} = 9$
$174. \theta = 50.9$	
175.Proof	194. $k = \frac{6}{7}$
$176.y = \sqrt{3}x + 2\sqrt{3}$	195.Proof.
177.y = -3x + 9	196. $y = 3x + 7$
178.Point of contact is $(1, 4)$	197. $3y = 4x - 11$
$179.u_9 = 9$ $u_{10} = 6.8$ 180 Area = 36 square units	198. $P(1, -2)$ $Q(3, 4)$
180. Area = 36 square units	199. $u_1 = 16$ $u_2 = 20$ $u_3 = 21$
	200. Area = $\frac{9}{2}$ square units