ADVANCED HIGHER MATHEMATICS UNIT 2 OUTCOME 3

COMPLEX NUMBERS

INTRODUCTION

Consider the quadratic equation z* —4z +13=0,

This equation must be solved using the quadratic formula with a =1, b=-4 and ¢=13.

Z:—bi\/b2 —4dac

2a
4+J(-4)* —4x1x13
N 2x1

44436

2

The quadratic equation has no real roots since 5% ~ 4ac < 0. The non-real roots of this equation can be
found as follows.

Now +— 36 = /36 x (—1) =~/36 x = 1 = 6 , where i =~ 1.

Then z=

Hence z=2+3i or z=2-3i.

The roots above are known as complex numbers.
In general, a complex number is of the form x + yi, where x and y are real numbers and i =+/—1.

Note that since i =+/— 1, this means that i* = -1.

i is known as an imaginary number. Although complex numbers are imaginary numbers, the use of
complex number methods is essential for many branches of mathematics.

REAL AND IMAGINARY PARTS

Let z =x+ yi be a general complex number.

x is known as the real part of z and y is known as the imaginary part of z.
We write Re(z)=x and Im(z)=y.

Re(-2+5i)=-2 and Im(-2+5i)=5

Re(-4/)=0 and Im(-4i)=—4



EQUAL COMPLEX NUMBERS

Two complex numbers arc equal if and only if both the real and imaginary parts of the complex numbers
are equal.

a+bi=c+di = a=c and b=d

If we know that two complex numbers are equal, we can equate the real and imaginary parts of the
complex numbers. The following example illustrates this principle.

Worked Example

Given that x + 2yi =3 + (x + 1)i, where x and y are real numbers, find the values of x and y.
Solution

x+2yi=3+(x+1)i

Equating real parts = x=3

Equating imaginary parts = 2y=x+1

gy
= NI
NS
NS

N

Hence x=3 and y=2.

ADDITION, SUBTRACTION AND MULTIPLICATION OF COMPLEX NUMBERS

Let z=4+3] and w=1-2i.

z+w=@&+3)+(1-20)
=4+3i+1-2i
=5+

z-w=(4+3)—(1-2i)
=4+3i-1+2i
=3+5i

zw=(4+30)(1-20)
=4 -5/ 6i°
=4-5i+6 [since i’ =-1]
=10-5i

z? = (4 +3i)’
=(4+30)(4 + 3i)
=16+ 24i + 9i*
=16+24i -9
=7+ 24i



COMPLEX CONJUGATES

Given a complex number z=x+ yi, where x and y are real numbers, the complex conjugate of z is

denoted by z and is defined as z = x — Vi

z=Xx+Yyi = z=x-yl

z=1+2i =  z=1-2i
z=5-3 =  z=5+3i
w=4i =  w=-4
z=3 =  z=3

Worked Example

Given the equation z + 2iz =8+ 7i for the complex number z, express z in the form a + ib.

Solution

Let z=a +ib, where a and b are real numbers.

Then z=a—ib.

Z+2iz=8+7i = a+ib+2i(a—-ib)=8+7i
=  a+ib+2ia-2i’h=8+7i
= a+ib+2ia+2b=8+7i [since i’ =-1]
= (a+2b)+i(b+2a)=8+T7i

Equating real parts = a+2b=38

Equating imaginary parts = 2a+b=7
Solving these equations simultaneously gives a =2 and b=3.

Hence z=2+3i.



DIVISION OF COMPLEX NUMBERS

To divide two complex numbers in the form of a quotient, multiply both the numerator and
denominator by the complex conjugate of the denominator. This will change the denominator into a
real number and the quotient can be expressed as a complex number. The following examples illustrate
this method.

Worked Example 1

Express 38 +?j_ in the form x + yi, where x and y are real numbers.
+2i

Solution

To simplify %— , multiply both the numerator and the denominator by 3 - 2i .
+ 21

8+i  (8+1)(3-2i)

3+2i (3+20)(3-2i)
_24-13i -2
9447
2413 +2
944
_26-13i

13
=27 -

Worked Example 2

i . .
in the form x + yi, where x and y are real numbers.

Express
P 4 i

Solution

To simplify %;—731 , multiply both the numerator and the denominator by 4 +3i.
1

1-7i _ (1-7i)(4+3i)

4-3i (4-30)4+30)
_4-25/-21°
C 16-9i
_4-25i+21
1649
_25-25i
- 25

=1-i




Miscellaneous Example

Find the two complex numbers z for which z? =5-12i.
Solution

Let z=x+ yi, where x and y are real numbers.

22 = (x + yi)(x + yi)
=x? + 2xyi + y*i®
=x*+2xyi- y* [since i’ =—1]

=(x? —y?)+2xyi
22=5-12i = (x* = y*)+2xyi=5-12i
Equating real parts = x> -yr=5 ()

Equating imaginary parts = 2xy =-12

- 12
4 2x
6
=  y=--= 2)
x
Sub. (2) into (1): . xP-yr=5

=

~N

|

|
= |
S
N

1]

wn

x? ——%zS [xx]
X

x* =36=75x*

x* =5x2-36=0

(x> =9(x* +4)=0

x*=9 or x* =—4

uusdy U

But x is a real number, so x° # —4.

Hence x*=9 = x=413

Sub. x=3 in (2) = y:%é:_z = z2=3-2i,
Sub. x=-3in(2) = y::——gzz o =342

Hence z=3~2i or z=-3+ 2{.



NOTES

1. You may verify that (3—2{)* =5-12i and (=3 + 2i)* =5~12i:

foeks
2. 3-2i and -3+ 2i are the square ase of the complex number 5 -12i.
3. There is another method for finding the square roots of a complex number (see later).

YOU MAY NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 1".



THE MODULUS AND ARGUMENT OF A COMPLEX NUMBER

In general, the complex number z=a+bi is represented by the point with coordinates (a, b) on an
Argand diagram.

YA

O a X

The modulus of z is the distance Oz and is denoted by \z] orr.

By Pythagoras: rP=a’ +b* = r=+a*+b>

r=va®+b’> or ‘z‘:\/az +b?

The argument of z is the angle between Oz and the positive direction of the x-axis.
The argument of z is denoted by arg(z) or & and is such that —180°<#<180° (or -z <f<7 if 4 is

measured in radians).

It is not possible to give a general formula for calculating ¢ as the method of calculation differs
according to the quadrant the complex number z lies in.

Note
a
cosfd=— = a=rcosf
v
) b )
sin@d=— = b=rsind
r
Now z=a+bi 4

=rcosé+ (rsin )i
=r(cos@ +isinb)

Expressing a complex number z in the form r(cos&+isin#) is known as expressing the complex
number in polar form.

It is simple to multiply, divide and find powers of complex numbers when expressed in polar form (see
later).



Worked Example 1 (First Quadrant)

Find the modulus and argument of the complex number z =2 + 2i.
Hence express z in polar form.

Solution

z=2+2 -  plot(2,2)

YA

O 2 X
r=~v22+2 =J414=48=22

2
tan&-—-E:l = f=tan"' 1=45°
modulus= 2\/5
argument = 45°

z=r(cosd+isinf)
= 2\/§(cos 45° + isin45°)

[Note that it is acceptable to give the argument in degrees unless the argument is specifically requested to
be given in radians.]



Worked Example 2 (‘Second Quadrant)

Find the modulus and argument of the complex number z=-1+ J3i.
Hence express z in polar form.

Solution

z=-1++3 —  plot(=1, +/3)

r=12+(3)2 =T+3=44=2

tanazl/i—izx/g = a=tan" /3 = 60°

—  H=180°—60°=120°

modulus=2
argument = 120°

z=r(cosf +isinfd)
=2(cos120° + i sin 120°)



Worked Example 3 (Fourth Quadrant)

Find the modulus and argument of the complex number z =6~ 23i .
Hence express z in polar form.

Solution

,=6-23i —  plot(6, -243)

r =67+ (243)2 =36+ 12 =48 =443

Note that the argument & must be such that —180° < #<180°.

tan&zz—éézi;i = €=tan"‘[{3—}:30°

= 6 =-30°
3
[Strictly speaking, this is abuse of notation, however itfa convenient method of calculating the argument
when the complex number lies in the fourth quadrant. ]

modulus = 4+/3
argument= —30°

z=r(cosd +isinb)
= 4+4/3{cos(~30°) + i sin(-30°)}



Worked Example 4 (Third Quadrant)

Find the modulus and argument of the complex number z = -2 (1+1).
Hence express z in polar form.

Solution

z=—\/_2-(l+i)=—«/5—~«/5i - plot(—«/g,—x/i)

1‘2\[(\/5)2+(\[7j)2 =2+2=44=2

Note that the argument ¢ must be'such that —180° < #<180°.

tana=—@:1 = a=tan"'1=45°
V2
= f=-180°+ 45°=-135°
modulus=2

argument=—135°

z=r(cosé+isind)
= 2{cos(~135°) + i sin(—135°)}



Worked Example S -

+ 3]

, | |
()  Express the complex number - 1n the form x + yi, where x and v are real numbers.

1-2j
(b)  Hence find the modulus and argument of this complex number.

Solution

143 (1+30)(1+2i)

(a) - = , :
1-2i  (1-20)(1+2i)
_1+5i+6i°
1-4;?
_1+51’—6
1+ 4
_=5+5i
5
=~1+1i
® X S plot(-L 1)
1-2¢
yA
.
N\
[ >
1 0 X
r=v1}+12 =2
1 -
tanazizl = a=tan~ 1=45°
= 6 =180°-45°=135°
modulus:ﬁ

argument=135°

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 2".



MULTIPLICATION AND DIVISION OF COMPLEX NUMBERS IN POLAR FORM

Let z, =r(cosd, +isind,) and z, =r,(cos#, +isind,) be two general complex numbers expressed in
polar form.

z,z, =r,(cosd, +isiné,)-r,(cosd, +isinb,)
=1, (cosé, +isind,)(cosd, +isind,)
=rr,(cosd, cosd, +isinb, cos b, +icosd, sinf, +i’ sin f, sin 4, )
=11, (cos, cosd, +ising, cos, +icosd,sinf, —~sing,sind,) [since i’ =-1]
=nr, {(cos @, cos @, ~sind, sind,) +i(sin b, cos &, + cos b, sin b, )}
=rr, {cos(, + 6,) + isin(4, + 6,)}

This means that to multiply two complex numbers in polar form:

1) multiply the modulii
(2) add the arguments

z, r(cosf +isind)
z, 1,(cos@, +isinéd,)
r,(cos@, +isin g, )(cosd, —isinéb,)

- r,(cosd, +isind,)(cosd, —isinéb,)

*x*

7,(cosd, cos @, +isiné, cos@, —icosd, sinf, —i’sinf, sin 4, )
r,(cos® @, —i* sin’ 6,)
_ 1(cosd, cos b, +ising cosd, —icosd, sinb, +sind, sind,)
- 2 i 2
r,(cos” @, +sin” 4,)

[since i* =-1]

r {(cos 8, cos 8, +sin b, sin 8, ) + i(sin 8, cos 8, —cos &, sin 6,)} [since cos’ &, +sin> &, =1]
- sin” @, =
r,(1) | : 2

7 {cos(8, - 8,) +isin(8, - 6,)}

v,

=1 {eos(8, - 8,) +isin(6, - 6,)}

r

*** multiplying both the numerator and denominator by the complex conjugate of cos &, +isin 4,

Z
This means that to divide two complex numbers in polar form:

)] divide the modulii
(2) subtract the arguments




Worked Example .
Let z =8(cos50° +isin 50°) and w=2(cos30° +isin30°).

(c)

Express in the form r(cos& +isin6): (2) zw  (b)

< |N
NNIg

Solution

(a) zw = 8(cos 50° + i sin 50°) - 2(cos 30° +i8in 30°)
=16(cos80° +isin80°)  [multiply the modulii and add the arguments]

z _ 8(cos50° +isin 50°)

(b) == T
w  2(cos30°+isin30°)
= 4(cos 20° + isin 20°)  [divide the modulii and subtract the arguments]
(c) w’ = www

= 2(cos 30° + i sin 30°) - 2(cos 30° + i sin 30°) - 2(cos 30° +isin 30°)
=8(c0s90° +7sin90°)  [multiply the modulii and add the arguments]

22 =ZZ
= 8(c0s 50° + i sin 50°) - 8(cos 50° + i sin 50°)
= 64(cos100° +isin100°)  [multiply the modulii and add the arguments]

2> 8(cos90° +isin 90°)
w?  64(cos100° + isin100°)

= é— {cos(~10°) + isin(=10°)}  [divide the modulii and subtract the arguments]

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 3".



DE MOIVRE'S THEOREM

Let z =r(cos@+isin ) be a general complex number expressed in polar form.

zi=zz
=r(cos@+isinf)-r(cosf +isinb)

=r’(cos2@ +isin2¢)  [multiply the modulii and add the arguments]

3 2
zZ"=Z Z
=r?(cos26 +isin28) - r(cos @ +isin )

=r’(cos3d +isin3¢) [multiply the modulii and add the arguments]
Z4 = Z3Z
=r*(cos 36 +isin368)-r(cos &+isin )

=r*(cos4d +isin4d) [multiply the modulii and add the arguments]

In general:

z" =r"(cosnf+isinnd)

This result for the power of a complex number in polar form is known as de Moivre's Theorem.
It can be shown that de Moivre's theorem is also valid for negative and fractional powers of complex
numbers in polar form.



Worked Example 1

Write the complex number z = —+/3 +i in polar form.

Hence: (a) express z* in the form x + yi, where x and y are real numbers
(b)  show that z° +64=0.

Solution

z==3+i -  plot(=+3,1)

re=y(3) +12 =B+1=4=2

tanafzL = a:tan"(ij:?)m

V3 V3

= d=180°-30°=150°

z=r(cosd +isinb)
=2(cos150° +isin150°)

(a) By de Moivre's theorem: z4=2° {cos(4 x150°) + isin(4 x 150°)}
=16(cos 600° + i sin 600°)

:16(_1_.@]
2

2

= -8 -8/3i

(b) By de Moivre's theorem: 2% =2° {cos(6 x150°) +7sin(6 x 150°)}
= 64(c0s 900° + i sin 900°)
= 64(~1+ 0i)
=—-64

Hence z* +64=-64+64=0.

. 3 1
[It is worth noting, in terms of exact values, that i?_—— =0-866... and —ﬁ =0-707...]



Worked Example 2

Let z=1+\/§i and w:—2\/§+2i.

(a)  Write z and w in polar form.

(b)  Hence express in the form x + yi, where x and y are real numbers:

9
Z

i 2w i) =
w

Solution

(a) It can easily be shown that z = 2(cos60° + isin 60°) and w=4(cos150° +isin150°).

b)(i) By de Moivre's theorem: 2> =2 {cos(3 x 60°) + i sin(3 x 60°)
y
= §(cos180° + i sin 180°)

w? =47 {cos(2 x 150°) + i sin(2 x 150°)}
=16(cos 300° + i sin 300°)

Hence z’w? =8(cos180° +isin180°)-16(cos300%+ isin 300°)
=128(cos480° +isin480°)  [multiply the modulii and add the arguments]

=128 -~ 1 + ﬁi
2 2
= —64 + 64/3i
[Note that it is best to multiply z* and w? in polar form.]

(i) By de Moivre's theorem: z2° =2 {cos(9 x 60°) + i sin(9 x 60°)}
=512(cos 540° + i sin 540°)

w® =4 {cos(3 x 150°) + i sin(3 x 150°)}
= 64(cos 450° + 1 sin 450°)

z®  512(cos540° + isin 540°)
Hence —= -
w®  64(cos450° + isin 450°)
=8(c0s90°+1isin90°)  [divide the modulii and subtract the arguments]
=8(0 + 1i)

=8

7
[Note that it is best to divide z’ and w? in polar form.]

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 4".



ROOTS OF COMPLEX NUMBERS

Given any complex number w, it can be shown that there are two square roots of w. That is, there are
two complex numbers z for which z* = w.

It can also be shown that there are three cube roots of w. That is, there are three complex numbers z for
which z° = w.

In general, for any positive integer n, there are n complex numbers z for which z" =w.
The following examples illustrate the method of finding the roots of a given complex number.
Worked Example 1

(a) Write the complex number 2 + 24/3i in polar form.

(b) Find the two complex numbers z for which 2t =2+243i, expressing each root in the form
r(cos@+isind).
(c) Show the two roots on a single Argand diagram.

Solution

(a) It can easily be shown that 2 + 2+/3i = 4(cos 60° + i sin 60°).

(b) 2P =2+23 = z?=4(cos60°+isin60°)  ..(*)
1
First Root: " z={4(cos60° +isin 60°)}z
1
=42 {cos(—;— X 60°) + isin(—;— X 60°j} [by de Moivre's theorem]
= 2(cos 30° + i sin 30°)
Second Roots : Equation (*) can be written as

z% = 4{cos(60° + 360°) + i sin(60° + 360°)}
= z? = 4(cos420° +isin420°)  [since cos420°=cos60° and
sin 420° = sin 60° ]

1
= z = {4(cos 420° + i sin 420°)}2

1
=42 cos(l X 420°j + isin[l x 420°
2 2

=2(c0s210° +isin 210°)

Summary of Roots: z, =2(c0s30° +isin 30°)
z, =2(cos210° +isin 210°)



(©)

A
2
Z
OO
) 9 7y
Z,
-2

[Note that on an Argand diagram the roots lie diametrically opposite each other on the circle with
centre O and radius 2. In general, the roots of a complex number always lie equally spaced on the
circumference of a circle with centre O. If one root of a complex number can be found, this fact

can therefore be used to find the other roots. ]



Worked Example 2 _

(a) Write the complex number — 8 + 83/ in polar form.

(b)  Find the two complex numbers z for which 22 =-8+83i, expressing each root in the form
r(cosd +isin ).

(c)  Show the two roots on a single Argand diagram.

Solution

(a) It can easily be shown that -8 + 8/3i = 16(cos120° +isin120°) .

(b)  z® =-8+83i =  z?=16(cos120° + isin120°)

1
First Root: z = {16(cos120° + i sin 120°)}2
1

=162 {cos{% X 120°) + isin(% X 120°j} [by de Moivre's theorem]

=4(cos 60° +7sin 60°)

Second Root: The second root will-lie diametrically opposite the first root on the
circumference of the circle with centre O and radius 4.

z = 4{cos(60° + 180°) + i sin(60° + 180°)}
= 4(cos 240° + i sin 240°)

Summary of Roots: z, =4(cos 60° + i sin 60°)
z, =2(c0s240° + i sin 240°)

(c)

60°




Worked Example 3

Find the three cube roots of the complex number 8i , expressing each root in the form x + yi, where x and
y are real numbers. Show all three roots on a single Argand diagram.

Solution

The three cube roots of 8 are the three roots of the equation z° =8i.

We must now write the complex number 8; in polar form.
It can easily be shown that 8 = 8(cos90° +isin 90°).

2’ =8 = z° =8(c0s90° +isin 90°)

!
First Root: z = {8(cos 90° + i sin 90°)}3
i

-g3 {cos(% x 900) + isin(% X 90°j} [by de Moivre's theorem]
=2(cos 30° + isin 30°)

Second Root: The three roots will lie equally spaced on the circumference of the circle with
centre O and radius 2.

z = 2{c0s(30° +120°) + i sin(30° + 120°)}
=2(cos150° +isin150°)

Third Root: z = 2{cos(150° + 120°) + i sin(150° +120°)}
=2(c0s270° + i sin 270°)
Summary of Roots:  z, =2(cos30° +isin30°) = 2[—\?— + %z} =3 +i

V3

z, =2(005150°+isin150°)=2[——-%11'):— 3+
2 2

z, = 2(c05270° + i sin 270°) = 2(0 - 11) = ~2i



Q° >

2N,

3

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 5".



POLYNOMIAL EQUATIONS

Worked Example 1

Verify that z =2 is a root of the equation z* —4z® +9z-10=0.
Hence find all the roots of this equation.

Solution
Let f(z)=z2’ -—4z> +9z-10.

A real root can be tested using synthetic division (as in Higher).

1 ~4 9 -10
2 2 -4 10
1 -2 5 0

Remainder= 0, hence z =2 is a root of the equation.

The polynomial can now be factorised: f(z2)=(z- ?.‘)(z2 -2z+45)

The remaining roots of the equation f(z)=0 come from the quadratic equation z> — 2z +5=0.

This equation must be solved using the quadratic formula with a=1, b=-2 and ¢=5:

_—bi\/b2~4ac

- 2a
224(-2)7 - 4x1x5
- 2x1

244216

Z

Summary of Roots:  z=2



Let f(z) be a polynomial in z with real coefficients.

It can be shown in general that the roots of the equation f(z) =0 always occur in conjugate pairs.

That is, if z =« if a root of the equation f(z)=0, then z= o will also be a root.

Illustration

The four roots of the equation z* -2z° -z?+2z+10=0 are z=2+i, z=2-i, z=-1+/ and
z =—1-1. The four roots are in conjugate pairs.

NOTES

1 If one root of a polynomial equation can be found (where the polynomial has real coefficients),
this fact can be used to find other roots of the equation.

(2)  The polynomial must have real coefficients for the roots to occur in conjugate pairs.
For example, the roots of the equation 22 +(i-2)z+3-i=0are z=1+i and z=1-2i, which
is not a conjugate pair.



Worked Example 2

(a)  Verify that z=1+2i is a root of the equation z* - 6z° +18z% =30z +25=0.
(b) Write down another root of this equation.
(¢)  Find all the roots of the equation.
Solution
(a) z=1+2i
22=ZZ 231"—222 24=ZZ3
=(1+ 20)(1+ 20) =1+ 2i)(-3 + 4i) =1+ 2)(-11-2§)
=1+4i+4i° =-3-2i+8i* =-11-24i - 4;*
=1+4i-4 =—3-2i-8 =—11-24i +4
=34+ 4i =-11-2i ==7-24
[Note that z* can also be found uisng z* =z%2? ]
z* -6z’ +182z° =30z + 25
=-=7-24i - 6(-11-2i) +18(-3 + 4i) - 30(1 + 2i) + 25
=-T7-24i+66+12i - 54+ 72i — 30 - 60i + 25
=0+0i
=0
Hence z=1+2i is a root of the equation z* - 62> +182z%> =30z +25=0.
(b)  The conjugate z=1- 2i 1s-also a root of the equation, as the polynomial has real coefficients.
() Let f(z)=z" 62" +182% =30z +25.

Recall that if z =« is a root of the equation f(z) =0, then (z — @) is a factor of f(z).
This fact can be used to find two factors of f(z) from the two roots known.

Root Factor
z=1+2i — z—(1+20)
z=1-2] — z—(1-20)

These factors can now be multiplied together to form a quadratic factor of f(z):

z-+2nlz~ -2} ={z -1 -2i}{(z -1) + 23}
=(z-1)? - 4* ,
=z -2z41+4
=z -2z+5



f(z) can now be factorised using algebraic long division.
72 -4z +35
22 -2z+5 | 2 -62°+182% =30z +25
z' =27+ 57°
—47° +132° =30z +25
—4z° + 827 =20z

522 -10z + 25
5z 10z + 25
0

[Note that the remainder should be zero at this stage, since we know that z* =2z +5 is a factor of

f(2).]
f(z) can now be factorised: f(z) = (z2 =2z +5)(z° —4z+5)
The remaining roots of the equation f(z) =0 come from the quadratic equation 22 —4z+5=0.

This equation must be solved using the quadratic formula with a=1, b=-4 and c¢=5:

Z:—bi\/bz—4ac
2a

4x.f(-4) - 4x1x5
- 2x1
_4x4-4

2

_442i

2

=2+i

Summary of Roots:  z=1+2i

z=1-21
z=2+1
z=2-1i

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 6".



TRIGONOMETRIC IDENTITIES

A complex number method can be used to find identities for cosné and sinné in terms of cos@ and
siné.

First note the pattern of powers of i: i’ =1
it =-1
PP =iti=(-1i=—i
i == (=)= =1
PP =iti=li=i
¢ =ifi=ii=i =-1
and so on

The cyclic pattern 1, i, =1, — i repeats indefinitely for powers of i.

If z=r(cos@+isind), recall that de Moivre's theroem states that z" =r"(cosnd+isinnd) for any
integer n. In particular, when r =1, this gives:

(cos@ +isind)" =cosnf +isinnd




Worked Example 1

Starting with
0858 + isin 56 = (cos 8+ isin 6)°,

find identities for cos54 and sin 5¢ in terms of cosé and sin &
Hence find an identity for tan 56 entirely in terms of tan 4.

Solution

c0s 56 + i sin 50 = (cos @ + i sin 8)°
Now expand (cosé + isin #)° using the binomial theorem:

cos 50 + isin 58 = (cos)° +5-(cos &) -isin@+10-(cos &)’ - (isin#)* +10-(cos§)* - (isin &)’
+5.cos@-(isin@)* + (isind)’
=cos® @ +5cos* @-isin@+10cos® §-i%sin? @ +10cos* @i’ sin* g+ 5cosd-i*sin’ &
+i’sin’ @

Now replace the powers of i

cosS@+isin56 =cos® @+ 5cos’ @-isin@+10cos® - (~1)sin® & +10cos® &+ (~i)sin’ I+ 5cosd-1sin’ &

+isin’ @
Equating real parts = cos 58 = cos® @—10cos’ @sin’ §+ Scos@sin*
Equating imaginary parts = sin56 = 5cos* @sin @ —10cos’ #sin® & + sin’ &
tan 59 = 52 56
cos 54

_ 5cos’ @sin@—10cos? Jsin’® G +sin° &
cos® #—10cos’ #sin? @+ 5cosfsin’ &

[now divide all terms by cos’ &]

5cos” @sind ~ 10 cos?® #sin’ & . sin® &

_ cos’ 8 cos’ @ cos’ &
cos’ @ 10cos’ fsin® @ . 5cos@sin’ @
cos® @ cos’ & cos’ 4

5sind 10sin® 8 N sin’® @
_cosf  cos’ @ cos’ @
10sin® @ 5sin’ @
1- S+ Z
cos® & cos” &

3 S5tand—10tan’ & + tan° &
1-10tan* @+ 5tan* @

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 7".



A complex number method can also be used to find identities for cos” & and sin” &.
Let z=cos@+isind.

Then de Moixvre's theorem states that z" =cosn@+isinnd.

1 1

n

2" cosn@+isinnd
B 1(cosné@ —isinnb)
- (cosnB+isinnf)(cosnf —isinnb)

ko

cosn@d—isinnd

cos’n@—i*sin’ nd
cosn@—isinnd ) .
=— — [since i’ =~1]
cos‘ né+sin” nd
cosnf—isinnd . .
= 1 [since cos’ n@+sin’ nd=1]

=cosn@ —isinnd

*** multiplying both the numerator and denominator by the complex conjugate of cosné& + isinné

1 ' ) )
[Alternatively: — =z"" =cos(-nb)+isin(-n¢) by de Moivre's theorem
z
=cosnd~isinng since cos(—n¢)=cosnd and sin(-né)=-sinnd]

1 . .
Hence z" +—=(cosnf +isinnb)+(cosnd —isinnd)
Z

=2cosnf

: 1
In particular, when n=1: z+—=2cosd
z

1
z" +—":2cosn(9
zZ

1
zZ+—=2c0s6




Worked Example 2

Let z=cos@+isiné.

' I
Starting with (2cos&)* = (z + —) , show that cos* ﬁzé-cos 46 + = cos 26 + %
z

Hence find I cos’ 6d8.

Solution

(2cos )’ = (z + lj
zZ

4
Now (2cos&)* =16cos* @ and expand (z +l) using the binomial theorem:
z

2 3 4
1600346’:24+4-z3-—1—+6-zz-(lj +4.z.[l} +(lj
z z z z

4 1
=z 4427 + 6+ —+—
z 4

=(z4 +L4]+4(22 +i2j+6
V4 V4
=2c0s46+4(2c0s28)+6  [using the result z” +—17:2cosn¢9]
z

=2c0s46 +8cos28+6

= cos4€:%(2cos46’+8cos2¢9+6)

:lcos46’+lcos26’+é
8 2

J.cos4 dd o = J.(lcos4c9+ l00526’+§jd¢9
8 2 8

=l-lsin4¢9+l-lsin26’+—3—6’+c
8 4 2 2 8

=Lsin46’+lsin2¢9+§¢9+c
32 4 8



. . " ) 1 )
Recall that if z=cosé& +isiné, then z" =cosné+isinnd and — =cosnd-isinnd.
, z

z" ——l;:(cosn6’+z"oinn67)—(cosné’—isinné’)

z
=cosnd+isinnd—cosné+isinnd
=2isinné

. 1 .
In particular, when n=1: z—-—=2isind

z

1 .
z" —~"~=2ismn¢9

z

1 )
z——=2isiné
zZ

Worked Example 3

Let z=cos@+isind.
o 1Y a3 1
Starting with (2isinéd)” =| z —— | , show that sin H:Zsm&—zsm?)é’.
z

Hence find Jsin3&i€.

Solution

(2isinf)’ = (z - l)

z

3
Now (2isin#)* =8i’ sin’ & =8(—i)sin’ §=—8isin’ & and expand (z - lj using the binomial theorem:
z

2 3
—8iSiH35’=Z3+3-22~(—lj+3~z-(—lj +(_lj
z V4 Z

1
:z3—32+E

: 2
bt |
z z
=2isin36 - 3(2isin¢) [using the result z" — —}"— =2isinné

z
=27sin38 - 6isin &



= —8sin’ #= 2sin30—6sind  [dividing through by i]
= sin36’=——é(2sin3¢9—6sin6’)

=—lsin36’+ésin6’
4 4

=Esin€—lsin36’
4 4

jsixﬁ ad6 = _[[isinﬂ——lsin?ﬂ)dﬁ
4 4
:i(—cosﬂ) —l(——l-éos3€)+ C
4 4 3

=—~3—c056?+—1-12~cos36’+c

YOU CAN NOW ATTEMPT THE WORKSHEET "COMPLEX NUMBERS 8".




LOCUS INTHE COMPLEX PLANE

Suppose a complex number z moves in the complex plane subject to some constraint (for example, that

2| =3 or arg(z) = —;5).
The path of the complex number z is known as the locus of z. The equation of the locus of z can be found.

Recall that the modulus of the complex number a + bi is given by the formula va® + 5 . This can be

written as:

la + bi|=va® +b*

This formula for the modulus of a complex number can be used to find the equation of the locus of z.

Recall from Higher that the equation of the circle with centre (a, b) and radius r is
(x—a) +(y=b) =r’.

Worked Example 1

The complex number z moves in the complex plane subject to the condition [z! =3.

Find the equation of the locus of z and interpret the locus geometrically.

Solution

Let z=x+ yi. Then |z|=x* + y*.
‘z|:3 = Jxi+yt =3

= x*+y*=9

The locus of z is the set of points on the circumference of the circle with centre O and radius 3.



Worked Example 2 .

The cemplex number z moves in the complex plane subject to the condition fz +1- 21'[ =4,

Find the equation of the locus of z and interpret the locus geometrically.
Solution
Let z=x+ yi.

z+1=2i=x+yi+1-2i
=(x+1D)+(y-2)i

2+ 1-2i = J(x + D* + (y - 2)?

p+1-2]=4 =  J@a+) +(y-2)" =4
= x+D)*+(y-2)*=16

The locus of z is the set of points on the circumference of the circle with centre (—1, 2) and radius 4.

Worked Example 3

The complex number z moves in the complex plane subject to the condition |z + i] <2.
Find the equation of the locus of z and interpret the locus geometrically.
Solution )

Let z=x+ yi.

z+i=z+ yi+i
=x+(y+1)i

[z +'ii:\/x2 +(y+1)2
|z+il:2 = i+ +D)P =2

= 2+ (y+1)’ =4
The locus of z is the set of points which lie inside the circle with centre (0, —1) and radius 2.

[Note that if the condition was |z + i[ <2, the locus of z would, be the set of points which lie on or inside

the circle with centre O and radius 2.]



Worked Example 4 _

The complex number z moves in the complex plane subject to the condition arg(z) = —735

Find the equation of the locus of z and interpret the locus geometrically.
Solution
Let z=x+yi.

The locus of z is the straight line below.

YA
Z
p
y
z
3/ O
o, >
tan 2 =2 RN
X X
= y:«,/_S_x

The locus of z is the part of the straight line with equation y = VBx with x>0

[Note that a complex number which lies on the part of the line y = V3x with x <0 does not have an

argument of % N



Worked Example 5

The complex number z moves in the complex plane such that |z + 2| =|z - .

Show that the locus of z is a straight line and find the equation of the locus of z.

Solution
Let z=x+yi.

Z+2=x+yi+2

=(x+2)+yi =

Z—i=x+yl—i
=x+(y-1)i =
lz+2|=]z - =
=
=
-
=

|z+2’=w/(x+2)2 +y2

)z~i‘:w/x2 + (y—l)2

\/(x+2)2 +y2 :\/x2 +(y--1)2
(x +2)* +y2 =x’ +(y—1)2

xPdx 44yt =t 1y -2y +1
dx+4=-2y+1
4x+2y+3=0

This equation is of the form A4x + By + C =0, hence the locus of z is a straight line.
The equation of the locus of zis 4x+2y+3=0.

YOU CAN NOW ATTEMPT THE WORKSHEETS "COMPLEX NUMBERS 9" AND

"COMPLEX NUMBERS 10".



