ADVANCED HIGHER MATHEMATICS

FURTHER SEQUENCES AND SERIES

MACILAURIN SERIES

. . . . . 2 3
Consider the infinite geometric series 1+ x+ x° + x~ + ..

If —1<x<1, this series converges and has a sum to infinity of ]
-Xx

1
Hence l+x+x2+x3+...=—1———, —l<x<l,
- X

i.e. Ql-x)"=l+x+x"+x> +..., -l<x<l.

The function f(x)=(1-x)"' can therefore be expressed as an infinite series of the
form a, +a,x+a,x* + a,x* +..., where the coefficients a,, a,, a,, a,, ... are
constants (provided —1< x <1).

In general, any function f(x) can be expressed as an infinite series of the form
a, + a,x + a,x* +a,x’ +..., where the coefficients a,, a,, a,, a, ... are constants.
This is known as expressing the function f(x) as a power series or Maclaurin
series. It is important to realise, however, that the power series may only converge for
certain values of x.

Suppose in general that
2 3 4
f(xX)=a,+ax+a,x" +a,x" +a,x" ..,
where the coefficients a,, a,, a,, ... are constants.

The coefficients a,, q,, a,, ... can be found by evaluating the function f(x) and its
derivatives at x=0.

f(0)=a,+a,-0+a, 0% +...

= f©) =4
= a, = f(0)
fl(x)=a, +2a,x+3a,x* +4a,x* +...
= f'(0)=aq,
= a, = f'(0)



f'(x)=2a, +3-2a,x+4-3a,x> +5-4a,x> +...
= f'(0)=2a,
AT

f"(x)=3-2a,+4-3-2a,x+5-4-3a,x> +6-5-4a,x* + ...
=  f"(0)=3-2a,
- a3=f(0)

.3.2

fPx)=4-3-2a,+5-4-3-2a,x+6-5-4-3a.x* +...
=  f%0)=4-3-2q,

4) 0)
= %S £-3(-2

and so on.

Now f()=a, +ax+a,x* +a,x> +ax’..

Recall that n! ("n factorial") denotes the product n(n—-1)(n-2)..3-2-1 for any
positive integer » (0! is defined to be 1).

Hence:

F0)=7 )+ f'Ox+L "2(10) w4l "3(!0) o+l (:!(0) A

This result can be used to find the Maclaurin series for a given function f(x).



Worked Example 1

Find the Maclaurin series for the function f(x)=e** up to and including the term in

4
X .

Solution

fx)=e*
f'(x)=2e*
F(x)=2e" - 2=4e>
f"(x)=4e¥ .2 =8e*

F@(x)=8e* .2 =16e*

Hence: f(0)=e® =1
f(0)=2e*=2
£1(0)=4¢ =4
ST(0)=8e" =8

F®(0)=16¢" =16

709= 1)+ O+ LD 42, L7OQ 5 SO

+...
2! 3 4!
= e2’=1+2x+ix2+—8—x3+ﬁx4+."
24
= e2x=1+2x+2x2+ix3+—2—x4+...

[It can be shown that this series converges for all real values of x.]



Worked Example 2

Find the Maclaurin series for the function f(x)=cos2x up to and including the term
. 4
in x".

Solution

f(x)=cos2x

f'(x)=-2sin2x

S"(x)=-2(2¢cos2x) = —4cos 2x

S (x)=-4(-2sin 2x) = 8sin 2x

S (x)=8(2cos2x) =16 cos x

Hence: f(0)=cos0=1
£'(0)=-25in0=0
f"(0)=-4cos0=—-4
f7(0)=8sin0=0

F¥(0)=16cos0=16

()= F©O)+ f'O)x+ SO 2 S7O) 5 f‘4)(0)x4 .

2! 3 4!
= cost=1+0x+—(i)x2+9-x3+l§x4+...
6 24
= cos2x=1-2x? +£x4 +...

[It can be shown that this series converges for all real values of x.]



Worked Example 3

Find the Maclaurin series for the function f(x)=In(l+3x) up to and including the
term in x*.

Solution

f(x)=In(1+3x)

' 1 3 4
"(x)= 3= =3(1+3x
S 1+3x 1+3x ( )

(%) ==31+3x)72-3=-91+3x)""
fm(x) =181 +3x)7 -3=54(1+3x)""
F@(x)=-162(1+3x)™ -3=—-486(1 +3x)™"
Hence: f(0)=1n1=0

f(0)=3

(0 =-9

£"(0) =54

£9(0) =486

7= 7+ froxs Q2 SO 2 SO0

2! 3 4!
= 1n(1+3x)=0+3x+@x2+ﬁx3+ﬂx“+...
2 6 24

= 1n(1+3x)=3x——%x2 +9x° —%x‘ + ..

[It can be shown that this series only converges when x lies in the interval
—l<xslj
3



Worked Example 4

Find the Maclaurin series for the function f(x)=+1+4x up to and including the
term in x*.

Solution

f(x)=\/1+4x=(l+4x)%

1

(%) =—;—(l + 4)«:)_E 4=2(1+ 4x)-3

3 3

f(x)=-11+4x) ? -4=—4(1+4x) ?

5

Fm(x)=6(1+4x) 2 -4=24(1+ 4x) ?

O (x)=-60(1 + 4x)_% -4=-240(1 + 4x) 3
Hence:  f(0)=+1=1

f'0)y=2

f'(0)=—4

f70)=24

F@0)=-240

10= @+ 1o+ L SO0 T2 O e,

= \/1—-(—_4—x=1+2x+@x2+ﬁx3+(-240)x4+
2 6 24
= Jl+4x=1+2x-2x" +4x° -10x* + ..

[It can be shown that this series only converges when x lies in the interval

1 1
-—<x<—.]
474



Worked Example S

(a) Obtain the Maclaurin series for the function f(x)=e’sinx up to and
including the term in x*.

(b)  Hence obtain the Maclaurin series for the function g(x) = e sin2x up to and
including the term in x*.

Solution

(a) f(x)=¢e"sinx

f'(x)=e" -cosx+sinx-e” [using the product rule}
=e*(sin x + COS Xx)

f"(x)=e"(cosx —sinx) + (sinx +cosx)-e* [using the product rule]
= ¢* {(cos x — sin x) + (sin x + cos x)}
=e*(2cosx)

=2e* cosx

f"(x)=2e" - (—sinx) +cosx-2e* [using the product rule]
=2e*(cos x — sin x)

F®(x)=2¢" - (—sinx — cos x) + (cos x — sin x) - 2¢* [using the product rule]
=2e” {(—.sin X —cos x) + (cos x — sin x)}
=2e*(-2sin x)
=—4e”* sin x
Hence: f(0)=e"sin0=0
f'(0)=e"(sin0 + cos 0) =1
f"(0)=2e°cos0=2

£"(0)=2e"(cos0~sin0)=2

FP(0)=—4e’sin0=0



(b)

S =f0)+ f'(0)x+

'@ 0 L1O s SO0
21 3! 4

e’ sinx=0+1x+—2-x2 +2x3 +?O4—x4 + ...

) 1
e*sinx=x+x° +§x3 + ...

[4iternatively, find the individual series for e* and sinx and multiply these
series together to find the series for e* sin x.]

g(x)=e* sin2x
x . 2 1 3
We know that e* sinx=x+x +§x + ...

Replacing x with 2x in this power series gives:

e’ sin2x=2x+ (2x)? + %(Zx)3 + ..
e® sin2x = 2x + 4x? +%-8x3 +..

) 8
e sin 2x = 2x + 4x? +—3—J\:3 +...



Worked Example 6
(2)  Obtain the Maclaurin series for sin® x up to an including the term in x*.

(b)  Hence obtain the Maclaurin series for cos’ x up to and including the term in

4
X .

Solution
(@)  f(x)=sin? x = (sinx)’
f'(x)=2sinx-cosx
f"(x)=2sinx-(-sinx)+cosx-2cosx [using the product rule]
=2cos’ x~2sin’ x
=2(cos x)* — 2(sin x)*
f"(x)=4cosx-(—sinx)—4sinx-cosx

=—4sinxcosx —4sinxcosx
=—-8sinxcosx

F¥(x)=—-8sinx-(~sinx)+cosx-(-8cosx) [using the product rule]
=8sin’ x - 8cos” x

Hence: f(0)=sin’0=0
f'(0)=2sin0cos0=0
f"(0)=2cos*0-2sin* 0=2
f7(0)=-8sin0cos0=0

F®(0)=8sin’ 0 -8cos*0=-8

=1+ r@e+ L0 SO SO0

= sin2x=0+0x+—2—x2+—0—x3+—(:9x4+...

) 1
= s1n2x=x2—§x4+...



[Note that f'(x) =2sinxcosx=sin2x.
This makes it easier to find the higher derivatives:

f7(x)=2cos2x
f"(x)=2(-2sin2x) =—4sin 2x
f@(x)=-4(2cos2x) = -8 cos2x ]

[dlternative Method: Note that sin’ x =sinxsinx and use the Maclaurin
series for sin x to find the series for sin’ x.]

(b) cos’x=1-sin’x

=l—-(x2 —%x‘* +j

=1-x? +§x4 + ...



Worked Example

Obtain the Maclaurin series for the function f(x)=tan™' x up to and including the
term in x°.

Solution
f(x)=tan™" x

1
1+x

[ x)=——=01+x")"

f'(x)=—(+x>)7-2x

=2
(1+x?)?

(1+x*)? -E“'x—(—zx)—(-2x)-%(1+x2)2

{(1+)c2)2}2
_ 1+ x3)* (-2)+2x-2(1+ x*) - 2x
B (1+x%)*
_8xP(1+x%) = 2(1+x°)?
- (1+x>)*
20+ 2)lx? -1+ x))
- (1+x*)*
21+ x*)(3x* -1)
T A+ %)
_23x -1) i
T+ x4

f(x)=

[using the quotient rule]

Hence: f©)=tan™ 0=0
f(0)=1
f'(0)=0
fm0)=-2



=

=

f(x)=£0)+ f'(0)x +
tan'lx:0+1x+g—x2 +

tan™' x=x———?;x3 + ...

2!
(=2) s

X +..

1@ 1O s,

3



THE FIXED POINTS OF A RECURRENCE RELATION

Consider the linear recurrence relation
X, =0-2x, +4
with a given starting value x,.

The sequence of values x,, x,, x,, .. generated by this recurrence relation will
converge to a limit L since —1<0-2<1.

The limit L satisfies the equation
L=0-2L+4,

since x, >L and x,,, > L as n— .

n+1
This equation can be solved to give L =5, hence the limit is 5.

Now consider the recurrence relation

with a given starting value x,.

Assuming that a limit exists as » — oo, the limit L will satisfy the equation

1 5
L_E(L+Z) [><2]

= 2L=L+—]5: [xL]
= 2L =1 +5

= =5

-

L=+5

The sequence of values x,, x,, x,, ... generated by this recurrence relation converges
to one of two different limits, depending on the starting value x,.

In broad terms, if the starting value x, is "close" to NG , then the sequence of values

Xy, X5 X,, ... Will converge to the limit V5.

On the other hand, if the starting value x, is "close" to — J5 , then the sequence of

values x,, x,, X,, ... will converge to the limit - V5.



So if x, =2, the sequence will converge to the limit J5, whereas if x, =2, the

sequence will converge to the limit — V5.

In this context, the limits J5 and —+/5 are known as the fixed points of the
recurrence relation.



FINDING AN APPROXIMATE ROOT OF THE EQUATION x = f{x)

An approximate root of the equation x = f(x) can sometimes be found using the
recurrence relation

X, =f(x,),

where the starting value x; is an initial approximation to the root.

Using the recurrence relation x,,, = f(x,), if the sequence of values x,, x,, x,, ..

converges to a limit L, then it can be shown that the limit L is in fact a root of the
equation x = f(x).

[If it exists, the limit L of the sequence generated by the recurrence relation
X, = f(x,) will satisfy the equation L= f(L) since x, L and x,,, — L as
n— . Thus L is a root of the equation x = f(x).]

n+l

Worked Example

The equation x* —2x —1=0 has a root in the interval 1< x <3.

1
(a) Verify that the equation can be rewritten as x = (2x +1)3.
1
(b) By using the iterative scheme x,,, =(2x, +1)* with x, =2, obtain an

approximation to the root which is correct to two decimal places.

Solution

(@ x*-2x-1=0 =  x =2x+1
1
= x=2x+1)3

®)  x,,,=02x, +1)°

1 1
x, =(2x, +1)* =53 =1.7099...

x, =1-6411...
x, =1-6238...
x, =1-6195...
x,=1-6184...
x, =1-6181...

x, =1-6180...



xg =1:6180...
The root is x=1-62 correct to two decimal places.

[Note 1: Do not round off the value of x, when used to calculate the value of
X,.- It is recommended that a graphics calculator is used to generate the

values of the sequence. Alternatively, the memory facility on a scientific
calculator can be used to store the full value of x, before calculating the

value of x,,.]

[Note 2: The equation x* ~2x—1=0 can also be rewritten as x = —;—(Jc3 -1.

. . . . 1 .
This suggests using the iterative scheme x,,, =5(x"3 —1) to obtain an

approximation to the root. You can verify, however, that the values generated
by this recurrence relation do not converge to a limit. When using this method
to find an approximate root of an equation, care must therefore be taken when
rewriting the equation in the form x= f(x). There is often more than one
possible rearrangement and not all will be useful. If one rearrangement does
not prove useful, you should always look to try a different rearrangement.]



